×

Criteria of measure-preserving for \(p\)-adic dynamical systems in terms of the van der Put basis. (English) Zbl 1278.37061

The theory of dynamical systems in the fields of \(p\)-adic numbers and their algebraic extensions is of great interest. As in the general theory of dynamical systems, problems of ergodicity and measure-preserving play fundamental roles in theory of \(p\)-adic dynamical systems. This paper is the first attempt to use the van der Put basis to examine measure-preserving discrete dynamical systems in a space of \(p\)-adic integers \(\mathbb{Z}_p\) for an arbitrary prime \(p\). The authors present a complete description of all compatible measure-preserving functions in the additive form of representation. In addition, they prove the criterion in terms of coefficients with respect to the van der Put basis determining whether a compatible function \(f: \mathbb{Z}_p \to \mathbb{Z}_p\) preserves the Haar measure.

MSC:

37P20 Dynamical systems over non-Archimedean local ground fields
39A12 Discrete version of topics in analysis

References:

[1] Albeverio, S.; Khrennikov, A.; Kloeden, P. E., Memory retrieval as a \(p\)-adic dynamical system, BioSyst., 49, 105-115 (1999)
[2] Albeverio, S.; Khrennikov, A.; Tirozzi, B.; De Smedt, D., \(p\)-Adic dynamical systems, Theoret. and Math. Phys., 114, 276-287 (1998) · Zbl 0974.37018
[3] Anashin, V., Uniformly distributed sequences of \(p\)-adic integers, Math. Notes, 55, 109-133 (1994) · Zbl 0835.11031
[4] Anashin, V., Uniformly distributed sequences of \(p\)-adic integers, II, Discrete Math. Appl., 12, 6, 527-590 (2002) · Zbl 1054.11041
[5] Anashin, V., Ergodic transformations in the space of \(p\)-adic integers, \((p\)-Adic Mathematical Physics, 2-nd Intʼl Conference. \(p\)-Adic Mathematical Physics, 2-nd Intʼl Conference, Belgrade, Serbia and Montenegro, 15-21 September \(2005. p\)-Adic Mathematical Physics, 2-nd Intʼl Conference. \(p\)-Adic Mathematical Physics, 2-nd Intʼl Conference, Belgrade, Serbia and Montenegro, 15-21 September 2005, AIP Conf. Proc., vol. 826 (2006)), 3-24 · Zbl 1152.37301
[6] Anashin, V.; Khrennikov, A., Applied Algebraic Dynamics, de Gruyter Exp. Math., vol. 49 (2009), Walter de Gruyter: Walter de Gruyter Berlin-New York · Zbl 1184.37002
[7] Anashin, V. S.; Khrennikov, A. Yu.; Yurova, E. I., Characterization of ergodicity of \(p\)-adic dynamical systems by using the van der Put basis, Dokl. Akad. Nauk, 438, 2, 151-153 (2011) · Zbl 1247.37007
[8] Arrowsmith, D. K.; Vivaldi, F., Some \(p\)-adic representations of the Smale horseshoe, Phys. Lett. A, 176, 292-294 (1993)
[9] Arrowsmith, D. K.; Vivaldi, F., Geometry of \(p\)-adic Siegel discs, Phys. D, 71, 222-236 (1994) · Zbl 0822.11081
[10] Benedetto, R., \(p\)-Adic dynamics and Sullivanʼs no wandering domain theorem, Compos. Math., 122, 281-298 (2000) · Zbl 0996.37055
[11] Benedetto, R., Hyperbolic maps in \(p\)-adic dynamics, Ergodic Theory Dynam. Systems, 21, 1-11 (2001) · Zbl 0972.37027
[12] Benedetto, R., Components and periodic points in non-Archimedean dynamics, Proc. Lond. Math. Soc., 84, 231-256 (2002) · Zbl 1012.37005
[13] Chabert, J.-L.; Fan, A.-H.; Fares, Y., Minimal dynamical systems on a discrete valuation domain, Discrete Contin. Dyn. Syst. Ser. A, 25, 777-795 (2009) · Zbl 1185.37014
[14] Coelho, Z.; Parry, W., Ergodicity of \(p\)-adic multiplication and the distribution of Fibonacci numbers, (Topology, Ergodic Theory, Real Algebraic Geometry. Topology, Ergodic Theory, Real Algebraic Geometry, Amer. Math. Soc. Transl. Ser., vol. 202 (2001)), 51-70 · Zbl 0985.11008
[15] De Smedt, S., Orthonormal bases for \(p\)-adic continuous and continuously differentiable functions, Ann. Math. Blaise Pascal, 2, 1, 275-282 (1995) · Zbl 0830.46070
[16] De Smedt, A.; Khrennikov, A., A \(p\)-adic behaviour of dynamical systems, Rev. Mat. Complut., 12, 301-323 (1999) · Zbl 0965.37067
[17] Fan, A.-H.; Li, M.-T.; Yao, J.-Y.; Zhou, D., \(p\)-Adic affine dynamical systems and applications, C. R. Acad. Sci. Paris Ser. I, 342, 129-134 (2006) · Zbl 1081.37003
[18] Fan, A.-H.; Li, M.-T.; Yao, J.-Y.; Zhou, D., Strict ergodicity of affine \(p\)-adic dynamical systems, Adv. Math., 214, 666-700 (2007) · Zbl 1121.37010
[19] Fan, A.-H.; Liao, L.; Wang, Y. F.; Zhou, D., \(p\)-Adic repellers in Qp are subshifts of finite type, C. R. Math. Acad. Sci. Paris, 344, 219-224 (2007) · Zbl 1108.37016
[20] Favre, C.; Rivera-Letelier, J., Théorème dʼéquidistribution de Brolin en dynamique \(p\)-adique, C. R. Math. Acad. Sci. Paris, 339, 271-276 (2004) · Zbl 1052.37039
[21] Khrennikov, A.; Nilsson, M., \(p\)-Adic Deterministic and Random Dynamics (2004), Kluwer: Kluwer Dordrecht · Zbl 1135.37003
[22] Lindhal, K.-O., On Siegelʼs linearization theorem for fields of prime characteristic, Nonlinearity, 17, 745-763 (2004) · Zbl 1046.37032
[23] Mahler, K., \(p\)-Adic Numbers and Their Functions (1981), Cambridge Univ. Press · Zbl 0444.12013
[24] M. van der Put, Algèbres de fonctions continues \(p\); M. van der Put, Algèbres de fonctions continues \(p\) · Zbl 0167.43503
[25] J. Rivera-Letelier, Dynamique des fonctions rationelles sur des corps locaux, PhD thesis, Orsay, 2000.; J. Rivera-Letelier, Dynamique des fonctions rationelles sur des corps locaux, PhD thesis, Orsay, 2000.
[26] Rivera-Letelier, J., Dynamique des fonctions rationelles sur des corps locaux, Astérisque, 147, 147-230 (2003) · Zbl 1140.37336
[27] Rivera-Letelier, J., Espace hyperbolique \(p\)-adique et dynamique des fonctions rationelles, Compos. Math., 138, 199-231 (2003) · Zbl 1041.37021
[28] Schikhof, W. H., Ultrametric Calculus. An Introduction to \(p\)-Adic Analysis (1984), Cambridge University Press: Cambridge University Press Cambridge · Zbl 0553.26006
[29] Silverman, J. H., The Arithmetic of Dynamical Systems, Grad. Texts in Math., vol. 241 (2007) · Zbl 1130.37001
[30] Vivaldi, F., Algebraic and arithmetic dynamics · Zbl 0706.58039
[31] Vivaldi, F., The arithmetic of discretized rotations, (Khrennikov, A. Y.; Rakic, Z.; Volovich, I. V., \(p\)-Adic Mathematical Physics. \(p\)-Adic Mathematical Physics, AIP Conf. Proc., vol. 826 (2006), Amer. Inst. Phys.: Amer. Inst. Phys. Melville, NY), 162-173 · Zbl 1152.37329
[32] Vivaldi, F.; Vladimirov, I., Pseudo-randomness of round-off errors in discretized linear maps on the plane, Internat. J. Bifur. Chaos, 13, 3373-3393 (2003) · Zbl 1057.37044
[33] Yurova, E. I., Van der Put basis and \(p\)-adic dynamics, \(p\)-Adic Numbers, Ultrametric Analysis, and Applications, 2, 2, 175-178 (2010) · Zbl 1250.37037
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.