×

Riesz bases and Jordan form of the translation operator in semi-infinite periodic waveguides. (English) Zbl 1278.35170

The paper under review is concerned with the study of the propagation of time-harmonic acoustic or transverse magnetic polarized electromagnetic waves in a periodic waveguide lying in the lalf-strip \((0,\infty)\times (0,L)\). The main results establishes that there exists a Riesz basis of the space of solutions to the time-harmonic wave equation such that the translation operator shifting a function by one periodicity length to the left is represented by an infinite Jordan matrix which contains at most a finite number of Jordan blocks of size bigger than 1. Both the cases of frequencies in a band gap and frequencies in the spectrum and a variety of boundary conditions on the top and bottom are considered. A generalization of Rouché’s theorem is a basic tool in the qualitative analysis developed in this paper. This paper also contains two appendices on radiation conditions and on uniqueness results.

MSC:

35P30 Nonlinear eigenvalue problems and nonlinear spectral theory for PDEs
35B27 Homogenization in context of PDEs; PDEs in media with periodic structure
35B30 Dependence of solutions to PDEs on initial and/or boundary data and/or on parameters of PDEs
35Q60 PDEs in connection with optics and electromagnetic theory
78A40 Waves and radiation in optics and electromagnetic theory

References:

[1] Yablonovitch, E., Inhibited spontaneous emission in solid-state physic and electronics, Phys. Rev. Lett., 58, 20, 2059-2062 (1987)
[2] Figotin, A.; Klein, A., Localized classical waves created by defects, J. Stat. Phys., 86, 1-2, 165-177 (1997) · Zbl 0952.76543
[3] Figotin, A.; Kuchment, P., Band-gap structure of spectra of periodic dielectric and acoustic media. I. Scalar model, SIAM J. Appl. Math., 56, 1, 68-88 (1996) · Zbl 0852.35014
[4] Figotin, A.; Kuchment, P., Band-gap structure of spectra of periodic dielectric and acoustic media. II. Two-dimensional photonic crystals, SIAM J. Appl. Math., 56, 6, 1561-1620 (1996) · Zbl 0868.35009
[5] Kuchment, P., Floquet Theory for Partial Differential Equations, Operator Theory: Advances and Applications, vol. 60 (1993), Birkhäuser Verlag: Birkhäuser Verlag Basel · Zbl 0789.35002
[6] Kuchment, P., The mathematics of photonic crystals, (Mathematical Modeling in Optical Science. Mathematical Modeling in Optical Science, Frontiers Appl. Math., vol. 22 (2001), SIAM: SIAM Philadelphia, PA), 207-272 · Zbl 0986.78004
[7] Johnson, S. G.; Joannopoulos, J. D., Photonic Crystals: The Road from Theory to Practice (2002), Kluwer Academic Publishers: Kluwer Academic Publishers Boston
[8] Sakoda, K., Optical Properties of Photonic Crystals, Springer Series in Optical Sciences, vol. 80 (2005), Springer-Verlag: Springer-Verlag Berlin
[9] Ammari, H.; Santosa, F., Guided waves in a photonic bandgap structure with a line defect, SIAM J. Appl. Math., 64, 6, 2018-2033 (2004), (electronic) · Zbl 1060.35140
[10] Figotin, A.; Klein, A., Localization of classical waves. I. Acoustic waves, Comm. Math. Phys., 180, 2, 439-482 (1996) · Zbl 0878.35109
[11] Figotin, A.; Klein, A., Localization of classical waves. II. Electromagnetic waves, Comm. Math. Phys., 184, 2, 411-441 (1997) · Zbl 0878.35110
[12] Figotin, A.; Klein, A., Localization of light in lossless inhomogeneous dielectrics, J. Opt. Soc. Amer., 15, 5, 1423-1435 (1998)
[13] Figotin, A.; Klein, A., Midgap defect modes in dielectric and acoustic media, SIAM J. Appl. Math., 58, 6, 1748-1773 (1998), (electronic) · Zbl 0963.78005
[14] Soussi, S., Modeling photonic crystal fibers, Adv. in Appl. Math., 36, 3, 288-317 (2006) · Zbl 1132.35084
[15] Fliss, S.; Joly, P., Exact boundary conditions for time-harmonic wave propagation in locally perturbed periodic media, Appl. Numer. Math., 59, 2155-2178 (2008) · Zbl 1165.78311
[17] Fliss, S.; Joly, P.; Li, R. J., Exact boundary conditions for periodic waveguides containing a local perturbation, Commun. Comput. Phys., 1, 6, 945-973 (2006) · Zbl 1125.78008
[18] Gohberg, I. C.; Sigal, E. I., An operator generalization of the logarithmic residue theorem and Rouchéʼs theorem, Mat. Sb. (N.S.), 84, 126, 607-629 (1971)
[19] Nazarov, S. A.; Plamenevsky, B. A., Elliptic Problems in Domains with Piecewise Smooth Boundaries, de Gruyter Expositions in Mathematics, vol. 13 (1994), Walter de Gruyter & Co.: Walter de Gruyter & Co. Berlin · Zbl 0806.35001
[20] Lions, J.-L.; Magenes, E., Problèmes aux limites non homogènes et applications, vol. 1, Travaux et Recherches Mathématiques, vol. 17 (1968), Dunod: Dunod Paris · Zbl 0165.10801
[21] Steinberg, S., Meromorphic families of compact operators, Arch. Ration. Mech. Anal., 31, 372-379 (1968/1969) · Zbl 0167.43002
[22] Sobolev, A. V.; Walthoe, J., Absolute continuity in periodic waveguides, Proc. Lond. Math. Soc. (3), 85, 3, 717-741 (2002) · Zbl 1247.35077
[24] Ehrhardt, M.; Sun, J.; Zheng, C., Evaluation of scattering operators for semi-infinite periodic arrays, Commun. Math. Sci., 7, 2, 347-364 (2009) · Zbl 1182.35019
[25] Schulz, F., Regularity Theory for Quasilinear Elliptic Systems and Monge-Ampère Equations in Two Dimensions, Lecture Notes in Mathematics, vol. 1445 (1990), Springer-Verlag: Springer-Verlag Berlin · Zbl 0709.35038
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.