×

Decay rates and global existence for semilinear dissipative Timoshenko systems. (English) Zbl 1278.35021

This paper addresses the issue of existence, uniqueness and long time existence of the Cauchy problem for the following semilinear Timoschenko system \[ \varphi_{tt}(t,x)-(\varphi_x-\psi)_x(t,x)=0, \]
\[ \psi_{tt}(t,x)-a^2\psi_{xx}(t,x)-(\varphi_x-\psi)(t,x)+\mu\psi_t(t,x)=|\psi(t,x)|^p, \] for \((t,x)\in\mathbb{R}^+\times\mathbb{R}\). This system is dissipative but not strictly so. The authors first consider the linear semigroup from \(H^s(\mathbb{R})\cap L^{1,\gamma}(\mathbb{R})\) to \(H^s(\mathbb{R})\), where \[ L^{1,\gamma}(\mathbb{R})=\{w\;|\int_{\mathbb{R}}(1+|x|^{\gamma})|w(x)|dx<\infty\}. \] As in [K. Ide et al., Math. Models Methods Appl. Sci. 18, No. 5, 647–667 (2008; Zbl 1153.35013)], the \(H^s\) norm of the semigroup is shown to decrease like a power of time, involving the parameter \(\gamma\).
The local existence for the semilinear system is given in a space of kind \(e^{-|x|^2/(1+t)^{\rho}}L^2(\mathbb{R})\cap H^1(\mathbb{R})\) as in [R. Ikehata and Y. Inoue, Nonlinear Anal., Theory Methods Appl. 69, No. 4, A, 1396–1401 (2008; Zbl 1149.35010)] without using the \(\gamma\)-linear estimate. Finally, a global existence result is proved for initial data with small norm in \(e^{-|x|^2}L^2(\mathbb{R})\cap L^{1,\gamma}(\mathbb{R})\). Because of non strictly dissipativeness, one additionally requires that \(p>12\).

MSC:

35B40 Asymptotic behavior of solutions to PDEs
35L71 Second-order semilinear hyperbolic equations
35L52 Initial value problems for second-order hyperbolic systems

Keywords:

weighted spaces
Full Text: DOI

References:

[1] Fatiha Alabau-Boussouira, Asymptotic behavior for Timoshenko beams subject to a single nonlinear feedback control, NoDEA Nonlinear Differential Equations Appl. 14 (2007), no. 5-6, 643 – 669. · Zbl 1147.35055 · doi:10.1007/s00030-007-5033-0
[2] F. Ammar-Khodja, A. Benabdallah, J. E. Muñoz Rivera, and R. Racke, Energy decay for Timoshenko systems of memory type, J. Differential Equations 194 (2003), no. 1, 82 – 115. · Zbl 1131.74303 · doi:10.1016/S0022-0396(03)00185-2
[3] Karine Beauchard and Enrique Zuazua, Large time asymptotics for partially dissipative hyperbolic systems, Arch. Ration. Mech. Anal. 199 (2011), no. 1, 177 – 227. · Zbl 1237.35017 · doi:10.1007/s00205-010-0321-y
[4] Stefano Bianchini, Bernard Hanouzet, and Roberto Natalini, Asymptotic behavior of smooth solutions for partially dissipative hyperbolic systems with a convex entropy, Comm. Pure Appl. Math. 60 (2007), no. 11, 1559 – 1622. · Zbl 1152.35009 · doi:10.1002/cpa.20195
[5] Hiroshi Fujita, On the blowing up of solutions of the Cauchy problem for \?_{\?}=\Delta \?+\?^{1+\?}, J. Fac. Sci. Univ. Tokyo Sect. I 13 (1966), 109 – 124 (1966). · Zbl 0163.34002
[6] K. Graff. Wave Motion in Elastic Solids. Dover, New York, 1975. · Zbl 0314.73022
[7] Aissa Guesmia and Salim A. Messaoudi, General energy decay estimates of Timoshenko systems with frictional versus viscoelastic damping, Math. Methods Appl. Sci. 32 (2009), no. 16, 2102 – 2122. · Zbl 1183.35036 · doi:10.1002/mma.1125
[8] Roger A. Horn and Charles R. Johnson, Topics in matrix analysis, Cambridge University Press, Cambridge, 1991. · Zbl 0729.15001
[9] Kentaro Ide, Kazuo Haramoto, and Shuichi Kawashima, Decay property of regularity-loss type for dissipative Timoshenko system, Math. Models Methods Appl. Sci. 18 (2008), no. 5, 647 – 667. · Zbl 1153.35013 · doi:10.1142/S0218202508002802
[10] Kentaro Ide and Shuichi Kawashima, Decay property of regularity-loss type and nonlinear effects for dissipative Timoshenko system, Math. Models Methods Appl. Sci. 18 (2008), no. 7, 1001 – 1025. · Zbl 1160.35346 · doi:10.1142/S0218202508002930
[11] Ryo Ikehata, New decay estimates for linear damped wave equations and its application to nonlinear problem, Math. Methods Appl. Sci. 27 (2004), no. 8, 865 – 889. · Zbl 1049.35135 · doi:10.1002/mma.476
[12] Ryo Ikehata and Yu-ki Inoue, Global existence of weak solutions for two-dimensional semilinear wave equations with strong damping in an exterior domain, Nonlinear Anal. 68 (2008), no. 1, 154 – 169. · Zbl 1128.35073 · doi:10.1016/j.na.2006.10.038
[13] Ryo Ikehata and Kensuke Tanizawa, Global existence of solutions for semilinear damped wave equations in \?^{\?} with noncompactly supported initial data, Nonlinear Anal. 61 (2005), no. 7, 1189 – 1208. · Zbl 1073.35171 · doi:10.1016/j.na.2005.01.097
[14] Tosio Kato, Perturbation theory for linear operators, 2nd ed., Springer-Verlag, Berlin-New York, 1976. Grundlehren der Mathematischen Wissenschaften, Band 132. · Zbl 0342.47009
[15] Jong Uhn Kim and Yuriko Renardy, Boundary control of the Timoshenko beam, SIAM J. Control Optim. 25 (1987), no. 6, 1417 – 1429. · Zbl 0632.93057 · doi:10.1137/0325078
[16] Zhuangyi Liu and Bopeng Rao, Energy decay rate of the thermoelastic Bresse system, Z. Angew. Math. Phys. 60 (2009), no. 1, 54 – 69. · Zbl 1161.74030 · doi:10.1007/s00033-008-6122-6
[17] Akitaka Matsumura, On the asymptotic behavior of solutions of semi-linear wave equations, Publ. Res. Inst. Math. Sci. 12 (1976/77), no. 1, 169 – 189. · Zbl 0356.35008 · doi:10.2977/prims/1195190962
[18] Salim A. Messaoudi and Muhammad I. Mustafa, A stability result in a memory-type Timoshenko system, Dynam. Systems Appl. 18 (2009), no. 3-4, 457 – 468. · Zbl 1183.35194
[19] Salim A. Messaoudi and Muhammad I. Mustafa, On the stabilization of the Timoshenko system by a weak nonlinear dissipation, Math. Methods Appl. Sci. 32 (2009), no. 4, 454 – 469. · Zbl 1171.35014 · doi:10.1002/mma.1047
[20] Salim A. Messaoudi, Michael Pokojovy, and Belkacem Said-Houari, Nonlinear damped Timoshenko systems with second sound — global existence and exponential stability, Math. Methods Appl. Sci. 32 (2009), no. 5, 505 – 534. · Zbl 1156.35321 · doi:10.1002/mma.1049
[21] Salim A. Messaoudi and Belkacem Said-Houari, Energy decay in a Timoshenko-type system of thermoelasticity of type III, J. Math. Anal. Appl. 348 (2008), no. 1, 298 – 307. · Zbl 1145.74009 · doi:10.1016/j.jmaa.2008.07.036
[22] Salim A. Messaoudi and Belkacem Said-Houari, Energy decay in a Timoshenko-type system with history in thermoelasticity of type III, Adv. Differential Equations 14 (2009), no. 3-4, 375 – 400. · Zbl 1168.35320
[23] Salim A. Messaoudi and Belkacem Said-Houari, Uniform decay in a Timoshenko-type system with past history, J. Math. Anal. Appl. 360 (2009), no. 2, 459 – 475. · Zbl 1183.35040 · doi:10.1016/j.jmaa.2009.06.064
[24] L. Nirenberg, On elliptic partial differential equations, Ann. Scuola Norm. Sup. Pisa (3) 13 (1959), 115 – 162. · Zbl 0088.07601
[25] Reinhard Racke, Lectures on nonlinear evolution equations, Aspects of Mathematics, E19, Friedr. Vieweg & Sohn, Braunschweig, 1992. Initial value problems. · Zbl 0811.35002
[26] J. E. Muñoz Rivera and R. Racke. Mildly dissipative nonlinear Timoshenko systems, global existence and exponential stability. J. Math. Anal. Appl., 276:248-276, 2002. · Zbl 1106.35333
[27] J. E. Muñoz Rivera and R. Racke, Global stability for damped Timoshenko systems, Discrete Contin. Dyn. Syst. 9 (2003), no. 6, 1625 – 1639. · Zbl 1047.35023 · doi:10.3934/dcds.2003.9.1625
[28] Jaime E. Muñoz Rivera and Reinhard Racke, Timoshenko systems with indefinite damping, J. Math. Anal. Appl. 341 (2008), no. 2, 1068 – 1083. · Zbl 1139.35023 · doi:10.1016/j.jmaa.2007.11.012
[29] Jaime E. Muñoz Rivera and Hugo D. Fernández Sare, Stability of Timoshenko systems with past history, J. Math. Anal. Appl. 339 (2008), no. 1, 482 – 502. · Zbl 1132.45008 · doi:10.1016/j.jmaa.2007.07.012
[30] Belkacem Said-Houari and Yamina Laskri, A stability result of a Timoshenko system with a delay term in the internal feedback, Appl. Math. Comput. 217 (2010), no. 6, 2857 – 2869. · Zbl 1342.74086 · doi:10.1016/j.amc.2010.08.021
[31] Hugo D. Fernández Sare and Reinhard Racke, On the stability of damped Timoshenko systems: Cattaneo versus Fourier law, Arch. Ration. Mech. Anal. 194 (2009), no. 1, 221 – 251. · Zbl 1251.74011 · doi:10.1007/s00205-009-0220-2
[32] Irving Segal, Dispersion for non-linear relativistic equations. II, Ann. Sci. École Norm. Sup. (4) 1 (1968), 459 – 497. · Zbl 0179.42302
[33] Yasushi Shizuta and Shuichi Kawashima, Systems of equations of hyperbolic-parabolic type with applications to the discrete Boltzmann equation, Hokkaido Math. J. 14 (1985), no. 2, 249 – 275. · Zbl 0587.35046 · doi:10.14492/hokmj/1381757663
[34] Abdelaziz Soufyane and Ali Wehbe, Uniform stabilization for the Timoshenko beam by a locally distributed damping, Electron. J. Differential Equations (2003), No. 29, 14. · Zbl 1012.35053
[35] S. Timoshenko. On the correction for shear of the differential equation for transverse vibrations of prismatic bars. Philisophical Magazine, 41:744-746, 1921.
[36] Grozdena Todorova and Borislav Yordanov, Critical exponent for a nonlinear wave equation with damping, J. Differential Equations 174 (2001), no. 2, 464 – 489. · Zbl 0994.35028 · doi:10.1006/jdeq.2000.3933
[37] Han Yang and Albert Milani, On the diffusion phenomenon of quasilinear hyperbolic waves, Bull. Sci. Math. 124 (2000), no. 5, 415 – 433 (English, with English and French summaries). · Zbl 0959.35126 · doi:10.1016/S0007-4497(00)00141-X
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.