×

The diameter of the thick part of moduli space and simultaneous Whitehead moves. (English) Zbl 1277.32013

Let \(\mathcal{M}_{g,p}\) be the moduli space of the complete, finite volume, hyperbolic surfaces of genus \(g\) with \(p\) labeled punctures. The \(\epsilon\)-thick part \(\mathcal{M}_{g,p}^{\epsilon}\) of \(\mathcal{M}_{g,p}\) is the space of surfaces in \(\mathcal{M}_{g,p}\) the systole of which has length at least \(\epsilon\), where \(\epsilon \leq \epsilon_M\), the Margulis constant.
The authors study the diameter of \(\mathcal{M}_{g,p}^{\epsilon}\) equipped with the Teichmüller metric or the Lipschitz metric (both are \(L^{\infty}\)-metrics) and show that it is of order \(\log((g+p)/\epsilon)\) in both metrics. Also the width and the height of \(\mathcal{M}_{g,p}^{\epsilon}\) are obtained asymptotically. Here the width of \(\mathcal{M}_{g,p}^{\epsilon}\) is the diameter of the set \(\mathcal{B}_{g,p}\) of surfaces in \(\mathcal{M}_{g,p}^{\epsilon}\) which admit a pants decomposition consisting of curves of length \(\epsilon_M\); the height of \(\mathcal{M}_{g,p}^{\epsilon}\) is the Hausdorff distance between \(\mathcal{M}_{g,p}^{\epsilon}\) and \(\mathcal{B}_{g,p}\).
The authors consider the space Graph\((g,p)\) of graphs of rank \(g\) with \(p\) marked valence 1 vertices and \((2g-2+p)\) valence 3 vertices associated to the surfaces in \(\mathcal{B}_{g,p}\). It is shown that the diameter of Graph\((g,p)\) equipped with the metric of simultaneous Whitehead moves is of the same order as that of \(\mathcal{B}_{g,p}\). For the proof the authors introduce two algorithms for transforming trees by simultaneous Whitehead moves to reduce their heights and to get fully sorted trees. The result that expander graphs are not coarsely equidistributed in Graph\((g)\) is implied by the order of the length of dividing curves on a surface in \(\mathcal{B}_g\) associated to an expander graph.
The asymptotic diameter of the \(\epsilon\)-thick part of the moduli space of metric graphs is also studied in the Lipschitz metric. Furthermore the asymptotic diameters of Graph\((g,p)\) and of Graph\((g,p)\)/Sym\(_p\) (unlabeled punctures) in the metric of Whitehead moves are established.

MSC:

32G15 Moduli of Riemann surfaces, Teichmüller theory (complex-analytic aspects in several variables)
05C85 Graph algorithms (graph-theoretic aspects)
20F34 Fundamental groups and their automorphisms (group-theoretic aspects)

References:

[1] L. V. Ahlfors, Conformal Invariants: Topics in Geometric Function Theory , McGraw-Hill, New York, 1973. · Zbl 0272.30012
[2] F. Balacheff and H. Parlier, Bers’ constants for punctured spheres and hyperelliptic surface , J. Topol. Anal. 4 (2012), 271-296. · Zbl 1262.30046 · doi:10.1142/S179352531250015X
[3] B. Bollobás, The asymptotic number of unlabelled regular graphs , J. London Math. Soc. (2) 26 (1982), 201-206. · Zbl 0504.05051 · doi:10.1112/jlms/s2-26.2.201
[4] P. Bose, J. Czyzowicz, Z. Gao, P. Morin, and D. R. Wood, Simultaneous diagonal flips in plane triangulations , J. Graph Theory 54 (2007), 307-330. · Zbl 1120.05024 · doi:10.1002/jgt.20214
[5] W. Breslin, Thick triangulations of hyperbolic \(n\)-manifolds , Pacific J. Math. 241 (2009), 215-225. · Zbl 1228.30025 · doi:10.2140/pjm.2009.241.215
[6] P. Buser, Cubic graphs and the first eigenvalue of a Riemann surface , Math. Z. 162 (1978), 87-99. · Zbl 0371.53032 · doi:10.1007/BF01437826
[7] P. Buser, Geometry and Spectra of Compact Riemann Surfaces , Progr. Math. 106 , Birkhäuser, Boston, 1992. · Zbl 0770.53001
[8] W. Cavendish, Growth of the diameter of the pants graph modulo the mapping class group , preprint, , 2010.
[9] W. Cavendish and H. Parlier, Growth of the Weil-Petersson diameter of moduli space , Duke Math. J. 161 (2012), 139-171. · Zbl 1244.32008 · doi:10.1215/00127094-1507312
[10] M. Culler and K. Vogtmann, Moduli of graphs and automorphisms of free groups , Invent. Math. 84 (1986), 91-119. · Zbl 0589.20022 · doi:10.1007/BF01388734
[11] B. Farb and D. Margalit, A Primer on Mapping Class Groups , Princeton Math. Ser. 49 , Princeton Univ. Press, Princeton, N.J., 2012. · Zbl 1245.57002
[12] F. P. Gardiner and N. Lakic, Quasiconformal Teichmüller Theory , Math. Surveys Monogr. 76 , Amer. Math. Soc., Providence, 2000. · Zbl 0949.30002
[13] J. Hubbard, Teichmüller Theory and Applications to Geometry, Topology and Dynamics , Matric Edition, Ithaca, N.Y., 2006. · Zbl 1102.30001
[14] S. P. Kerckhoff, The asymptotic geometry of Teichmüller space , Topology 19 (1980), 23-41. · Zbl 0439.30012 · doi:10.1016/0040-9383(80)90029-4
[15] G. Leibon and D. Letscher, “Delaunay triangulations and Voronoi diagrams for Riemannian manifolds” in Proceedings of the Sixteenth Annual Symposium on Computational Geometry (Hong Kong, 2000) , ACM, New York, 2000, 341-349. · Zbl 1375.68156
[16] A. Lenzhen, K. Rafi, and J. Tao, Bounded combinatorics and the Lipschitz metric on Teichmüller space , Geom. Dedicata 159 (2012), 353-371. · Zbl 1254.30075 · doi:10.1007/s10711-011-9664-2
[17] W. B. R. Lickorish, A finite set of generators for the homeotopy group of a \(2\)-manifold , Proc. Cambridge Philos. Soc. 60 (1964), 769-778. · Zbl 0131.20801 · doi:10.1017/S030500410003824X
[18] G. A. Margulis, Explicit constructions of expanders (in Russian), Problemy Peredachi Informatsii 9 (1973), 71-80. · Zbl 0312.22011
[19] Y. N. Minsky, Extremal length estimates and product regions in Teichmüller space , Duke Math. J. 83 (1996), 249-286. · Zbl 0861.32015 · doi:10.1215/S0012-7094-96-08310-6
[20] M. S. Pinsker, “On the complexity of a concentrator” in 7 th International Telegraffic Conference , 1973, 318/1-318/4.
[21] D. D. Sleator, R. E. Tarjan, and W. P. Thurston, Short encodings of evolving structures , SIAM J. Discrete Math. 5 (1992), 428-450. · Zbl 0796.68139 · doi:10.1137/0405034
[22] W. P. Thurston, Minimal stretch maps between hyperbolic surfaces , preprint, [math.GT].
[23] S. A. Wolpert, The length spectra as moduli for compact Riemann surfaces , Ann. of Math. (2) 109 (1979), 323-351. · Zbl 0441.30055 · doi:10.2307/1971114
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.