×

Strict inequality in the box-counting dimension product formulas. (English) Zbl 1277.28014

The authors supplement the well-known upper and lower box-counting product inequalities. If we denote \(\dim_{LB} F\) and \(\dim_B F\) as the lower box-counting dimension and box-counting dimension of a set \(F\), respectively, then the authors obtain the following new formula: \[ \begin{aligned}\dim_{LB} F+\dim_{LB} G \leq \dim_{LB} (F\times G) \leq \min(\dim_{LB} F+\dim_B G, \dim_B F+\dim_{LB} G)\\ \leq \max(\dim_{LB} F+\dim_B G, \dim_B F+\dim_{LB} G) \leq \dim_B (F\times G) \leq \dim_B F+\dim_B G\end{aligned} \] for subsets of metric spaces. The authors also develop a procedure for constructing sets so that the upper and lower box-counting dimensions of these sets and their product can take arbitrary values satisfying the above product formula. In particular, the authors illustrate how badly the products of both the lower and upper box-counting dimensions can behave.

MSC:

28A80 Fractals

References:

[1] A. Besicovitch and P. A. P. Moran, The measure of product and cylinder sets , J. Lond. Math. Soc., 20 (1945), 110-120. · Zbl 0063.00354 · doi:10.1112/jlms/s1-20.2.110
[2] G. A. Edgar, Integral, Probability, and Fractal Measures , Springer-Verlag, New York, 1998. · Zbl 0893.28001
[3] H. G. Eggleston, A correction to a paper on the dimension of Cartesian products , Math. Proc. Cambridge Philos. Soc., 49 (1953), 437-440. · Zbl 0050.05802 · doi:10.1017/S0305004100028590
[4] K. Falconer, The Geometry of Fractal Sets , Cambridge Tracts in Mathematics, Cambridge University Press, Cambridge, 1985. · Zbl 0587.28004
[5] K. Falconer Fractal Geometry , 2nd ed., John Wiley & Sons, England, 2003.
[6] H. Federer, Geometric Measure Theory , Springer, Berlin, 1969. · Zbl 0176.00801
[7] F. Hausdorff, Dimension und äuß eres maß, Math. Ann., 79 (1918), 157-179. · JFM 46.0292.01 · doi:10.1007/BF01457179
[8] J. D. Howroyd, On dimension and on the existence of sets of finite positive Hausdorff measure , Proc. Lond. Mat. Soc., 70 (1995). · Zbl 0828.28002 · doi:10.1112/plms/s3-70.3.581
[9] B. B. Mandelbrot, Les Objets Fractals - Forme, Hasard et Dimension , Flammarion, Paris, 1975. · Zbl 0900.00018
[10] J. M. Marstrand, The dimension of Cartesian product sets , Math. Proc. Cambridge Philos. Soc., 50 (1954), 198-202. · Zbl 0055.05102 · doi:10.1017/S0305004100029236
[11] P. Mattila, Geometry of Sets and Measures in Euclidean Spaces. , Cambridge University Press, Cambridge, 1995. · Zbl 0819.28004
[12] J. C. Robinson, Infinite-Dimensional Dynamical Systems , Cambridge Texts in Applied Mathematics, Cambridge University Press, Cambridge, 2001. · Zbl 1026.37500
[13] J. C. Robinson Dimensions, Embeddings, and Attractors , Cambridge University Press, Cambridge, 2011. · Zbl 1222.37004
[14] H. Wegmann, Die Hausdorff-dimension von kartesischen produktmengen in metrischen räumen. , J. Reine Angew. Math., 234 (1969). · Zbl 0165.37405 · doi:10.1515/crll.1969.234.163
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.