×

The impact of short term synaptic depression and stochastic vesicle dynamics on neuronal variability. (English) Zbl 1276.92021

Summary: Neuronal variability plays a central role in neural coding and impacts the dynamics of neuronal networks. Unreliability of synaptic transmission is a major source of neural variability: synaptic neurotransmitter vesicles are released probabilistically in response to presynaptic action potentials and are recovered stochastically in time. The dynamics of this process of vesicle release and recovery interacts with variability in the arrival times of presynaptic spikes to shape the variability of the postsynaptic response. We use continuous time Markov chain methods to analyze a model of short term synaptic depression with stochastic vesicle dynamics coupled with three different models of presynaptic spiking: one model in which the timing of presynaptic action potentials are modeled as a Poisson process, one in which action potentials occur more regularly than a Poisson process (sub-Poisson) and one in which action potentials occur more irregularly (super-Poisson). We use this analysis to investigate how variability in a presynaptic spike train is transformed by short term depression and stochastic vesicle dynamics to determine the variability of the postsynaptic response. We find that sub-Poisson presynaptic spiking increases the average rate at which vesicles are released, that the number of vesicles released over a time window is more variable for smaller time windows than larger time windows and that fast presynaptic spiking gives rise to Poisson-like variability of the postsynaptic response even when presynaptic spike times are non-Poisson. Our results complement and extend previously reported theoretical results and provide possible explanations for some trends observed in recorded data.

MSC:

92C20 Neural biology

References:

[1] Abbott, L.F., & Regehr, W.G. (2004). Synaptic computation. Nature, 431(7010), 796-803. · doi:10.1038/nature03010
[2] Abbott, L.F., Varela, J.A., Sen, K., Nelson, S.B. (1997). Synaptic depression and cortical gain control. Science, 275(5297), 220-224. · doi:10.1126/science.275.5297.221
[3] Baddeley, R., Abbott, L., Booth, M., Sengpiel, F., Freeman, T., Wakeman, E., et al. (1997). Responses of neurons in primary and inferior temporal visual cortices to natural scenes. Proceedings of the Royal Society of London Series B: Biological Sciences, 264(1389), 1775-1783. · doi:10.1098/rspb.1997.0246
[4] Bair, W., Koch, C., Newsome, W., Britten, K. (1994). Power spectrum analysis of bursting cells in area mt in the behaving monkey. The Journal of Neuroscience, 14(5), 2870-2892.
[5] Barbieri, F., & Brunel, N. (2008). Can attractor network models account for the statistics of firing during persistent activity in prefrontal cortex? Front in Neuroscience, 2(1), 114. · doi:10.3389/neuro.01.003.2008
[6] Branco, T., & Staras, K. (2009). The probability of neurotransmitter release: variability and feedback control at single synapses. Nature Reviews Neuroscience, 10(5), 373-383. · doi:10.1038/nrn2634
[7] Bressloff, P.C. (1999). Mean-field theory of globally coupled integrate-and-fire neural oscillators with dynamic synapses. Physical Review E, 60, 2160-2170. doi:10.1103/PhysRevE.60.2160. http://link.aps.org/doi/10.1103/PhysRevE.60.2160. · doi:10.1103/PhysRevE.60.2160
[8] Britten, K., Shadlen, M., Newsome, W., Movshon, J. (1993). Responses of neurons in macaque mt to stochastic motion signals. Visual Neuroscience, 10, 1157-1157. · doi:10.1017/S0952523800010269
[9] Buracas, G., Zador, A., DeWeese, M., Albright, T. (1998). Efficient discrimination of temporal patterns by motion-sensitive neurons in primate visual cortex. Neuron, 20(5), 959-969. · doi:10.1016/S0896-6273(00)80477-8
[10] Chance, F., Nelson, S., Abbott, L. (1998). Synaptic depression and the temporal response characteristics of v1 cells. Journal of Neuroscience, 18(12), 4785.
[11] Churchland, M., Byron, M., Cunningham, J., Sugrue, L., Cohen, M., Corrado, G., et. al. (2010). Stimulus onset quenches neural variability: a widespread cortical phenomenon. Nature Neuroscience, 13(3), 369-378. · doi:10.1038/nn.2501
[12] Cook, D.L., Schwindt, P.C., Grande, L.A., Spain, W.J. (2003). Synaptic depression in the localization of sound. Nature, 421(6918), 66-70. · doi:10.1038/nature01248
[13] Cox, D. (1962). Renewal Theory. London: Methuen and Co. · Zbl 0103.11504
[14] Cox, D., & Isham, V. (1980). Point processes. London: Chapman and Hall. · Zbl 0441.60053
[15] Dan, Y., Atick, J., Reid, R. (1996). Efficient coding of natural scenes in the lateral geniculate nucleus: experimental test of a computational theory. The Journal of Neuroscience, 16(10), 3351-3362.
[16] Dayan, P., & Abbott, L. (2001). Theoretical Neurosci: Computational and mathematical modeling of neural systems. New York: Taylor & Francis. · Zbl 1051.92010
[17] de la Rocha, J., & Moreno, R. (2004). Correlations modulate the non-monotonic response of a neuron with short-term plasticity. Neurocomputing, 58, 313-319. · doi:10.1016/j.neucom.2004.01.061
[18] de la Rocha, J., & Nevado, A. (2002). Information transmission by stochastic synapses with short-term depression: neural coding and optimization. Neurocomputing, 44, 85-90. · Zbl 1007.68859 · doi:10.1016/S0925-2312(02)00362-4
[19] de la Rocha, J., & Parga, N. (2005). Short-term synaptic depression causes a non-monotonic response to correlated stimuli. Journal of Neuroscience, 25(37), 8416-8431. · doi:10.1523/JNEUROSCI.0631-05.2005
[20] de la Rocha, J., & Parga, N. (2008). Thalamocortical transformations of periodic stimuli: the effect of stimulus velocity and synaptic short-term depression in the vibrissa-barrel system. Journal of Computational Neuroscience, 25(1), 122-140. · Zbl 1412.92034 · doi:10.1007/s10827-007-0068-0
[21] Faisal, A., Selen, L., Wolpert, D. (2008). Noise in the nervous system. Nature Reviews Neuroscience, 9(4), 292-303. · doi:10.1038/nrn2258
[22] Fuhrmann, G., Segev, I., Markram, H., Tsodyks, M. (2002). Coding of temporal information by activity-dependent synapses. Journal of Neurophysiology, 87(1), 140.
[23] Galarreta, M., & Hestrin, S. (1998). Frequency-dependent synaptic depression and the balance of excitation and inhibition in the neocortex. Nature Neuroscience, 1, 587-594. · doi:10.1038/2882
[24] Goldman, M. (2004). Enhancement of information transmission efficiency by synaptic failures. Neural Computation, 16(6), 1137-1162. · Zbl 1054.92010 · doi:10.1162/089976604773717568
[25] Goldman, M., Nelson, S., Abbott, L. (1999). Decorrelation of spike trains by synaptic depression. Neurocomputing, 26, 147-153. · doi:10.1016/S0925-2312(99)00068-5
[26] Goldman, M., Maldonado, P., Abbott, L. (2002). Redundancy reduction and sustained firing with stochastic depressing synapses. The Journal of Neuroscience, 22(2), 584-591.
[27] Grande, L.A., & Spain, W.J. (2005). Synaptic depression as a timing device. Journal of Physiology, 20, 201-210. · doi:10.1152/physiol.00006.2005
[28] Hanson, J.E., & Jaeger, D. (2002). Short-term plasticity shapes the response to simulated normal and parkinsonian input patterns in the globus pallidus. Journal of Neuroscience, 22(12), 5164-5172.
[29] Harsch, A., & Robinson, H. (2000). Postsynaptic variability of firing in rat cortical neurons: the roles of input synchronization and synaptic nmda receptor conductance. The Journal of Neuroscience, 20(16), 6181-6192.
[30] Kara, P., Reinagel, P., Reid, R. (2000). Low response variability in simultaneously recorded retinal, thalamic, and cortical neurons. Neuron, 27(3), 635-646. · doi:10.1016/S0896-6273(00)00072-6
[31] Karlin, S., & Taylor, H. (1975). A first course in stochastic processes. New York: Academic Press. · Zbl 0315.60016
[32] Kuhn, A., Aertsen, A., Rotter, S. (2003). Higher-order statistics of input ensembles and the response of simple model neurons. Neural Computation, 15(1), 67-101. · Zbl 1026.92011 · doi:10.1162/089976603321043702
[33] Lindner, B., Gangloff, D., Longtin, A., Lewis, J.E. (2009). Broadband coding with dynamic synapses. Journal of Neuroscience, 29(7), 2076-2087. · doi:10.1523/JNEUROSCI.3702-08.2009
[34] Litwin-Kumar, A., & Doiron, B. (2012). Slow dynamics and high variability in balanced cortical networks with clustered connections. Nature Neuroscience, 15, 1498-1505. · doi:10.1038/nn.3220
[35] Maass, W., & Zador, A. (1999). Dynamic stochastic synapses as computational units. Neural Computation, 11(4), 903-917. · doi:10.1162/089976699300016494
[36] Markram, H., Wang, Y., Tsodyks, M. (1998). Differential signaling via the same axon of neocortical pyramidal neurons. Proceedings of the National Academy of Sciences of the United States of America, 95(9), 5323. · doi:10.1073/pnas.95.9.5323
[37] Matveev, V., & Wang, X. (2000a). Differential short-term synaptic plasticity and transmission of complex spike trains: to depress or to facilitate. Cerebral Cortex, 10(11), 1143-1153. · doi:10.1093/cercor/10.11.1143
[38] Matveev, V., & Wang, X. (2000b). Implications of all-or-none synaptic transmission and short-term depression beyond vesicle depletion: a computational study. Journal of Neuroscience, 20(4), 1575-1588.
[39] McAdams, C., & Maunsell, J. (1999). Effects of attention on the reliability of individual neurons in monkey visual cortex. Neuron, 23(4), 765-773. · doi:10.1016/S0896-6273(01)80034-9
[40] Melkonian, D., & Kostopoulos, G. (1996). Stochastic particle formulation of the vesicle hypothesis. Relevance to short-term phenomena. NeuroReport, 7(4), 937-942. · doi:10.1097/00001756-199603220-00022
[41] Merkel, M., & Lindner, B. (2010). Synaptic filtering of rate-coded information. Physical Review E, 81(4).
[42] Moreno-Bote, R., & Parga, N. (2006). Auto-and crosscorrelograms for the spike response of leaky integrate-and-fire neurons with slow synapses. Physical Review Letters, 96(2), 101. · doi:10.1103/PhysRevLett.96.028101
[43] Moreno-Bote, R., & Parga, N. (2010). Response of integrate-and-fire neurons to noisy inputs filtered by synapses with arbitrary timescales: Firing rate and correlations. Neural Computation, 22(6), 1528-1572. · Zbl 1188.92004 · doi:10.1162/neco.2010.06-09-1036
[44] Moreno-Bote, R., Renart, A., Parga, N. (2008). Theory of input spike auto- and cross-correlations and their effect on the response of spiking neurons. Neural Computation, 20(7), 1651-1705. · Zbl 1138.92014 · doi:10.1162/neco.2008.03-07-497
[45] Oswald, A.M.M., & Urban, N.N. (2012). Interactions between behaviorally relevant rhythms and synaptic plasticity alter coding in the piriform cortex. The Journal of Neuroscience, 32(18), 6092-6104. · doi:10.1523/JNEUROSCI.6285-11.2012
[46] Rav-Acha, M., Sagiv, N., Segev, I., Bergman, H., Yarom, Y. (2005). Dynamic and spatial features of the inhibitory pallidal GABAergic synapses. Journal of Neuroscience, 135(3), 791-802. · doi:10.1016/j.neuroscience.2005.05.069
[47] Rosenbaum, R. (2011). The transfer and propagation of correlated neuronal activity. Ph.D. thesis, University of Houston.
[48] Rosenbaum, R., Rubin, J., Doiron, B. (2012). Short term synaptic depression imposes a frequency dependent filter on synaptic information transfer. PLoS Computational Biology, 8(6), e1002557. · doi:10.1371/journal.pcbi.1002557
[49] Rothman, J.S., Cathala, L., Steuber, V., Silver, R.A. (2009). Synaptic depression enables neuronal gain control. Nature, 457(7232), 1015-1018. · doi:10.1038/nature07604
[50] Rotman, Z., Deng, P.Y., Klyachko, V.A. (2011). Short-term plasticity optimizes synaptic information transmission. Journal of Neuroscience, 31(41), 14800-14809. · doi:10.1523/JNEUROSCI.3231-11.2011
[51] Salinas, E., & Sejnowski, T. (2000). Impact of correlated synaptic input on output firing rate and variability in simple neuronal models. Journal of Neuroscience, 20(16), 6193.
[52] Salinas, E., & Sejnowski, T. (2002). Integrate-and-fire neurons driven by correlated stochastic input. Neural computation, 14(9), 2111-2155. · Zbl 1011.92016 · doi:10.1162/089976602320264024
[53] Senn, W., Markram, H., Tsodyks, M. (2001). An algorithm for modifying neurotransmitter release probability based on pre- and postsynaptic spike timing. Neural Computation, 13(1), 35-67. · Zbl 1047.92014 · doi:10.1162/089976601300014628
[54] Shadlen, M., & Newsome, W. (1998a). Noise, neural codes and cortical organization. Findings and Current Opinion in Cognitive Neuroscience, 4, 569-579. · doi:10.1016/0959-4388(94)90059-0
[55] Shadlen, M., & Newsome, W. (1998b). The variable discharge of cortical neurons: implications for connectivity, computation, and information coding. Journal of Neuroscience, 18(10), 3870-3896.
[56] Softky, W., & Koch, C. (1993). The highly irregular firing of cortical cells is inconsistent with temporal integration of random EPSPs. Journal of Neuroscience, 13(1), 334-350.
[57] Stevens, C., & Zador, A. (1998). Input synchrony and the irregular firing of cortical neurons. Nature Neuroscience, 1(3), 210-217. · doi:10.1038/659
[58] Stratonovich, R., & Silverman, R. (1967). Topics in the theory of random noise (Vol. 2). New York: Gordon and Breach. · Zbl 0183.22007
[59] Stratton, P.; Wiles, J., Comparing kurtosis score to traditional statistical metrics for characterizing the structure in neural ensemble activity, 115-122 (2007), New York
[60] Tetzlaff, T., Rotter, S., Stark, E., Abeles, M., Aertsen, A., Diesmann, M. (2008). Dependence of neuronal correlations on filter characteristics and marginal spike train statistics. Neural Computation, 20(9), 2133-2184. · Zbl 1140.92305 · doi:10.1162/neco.2008.05-07-525
[61] Tolhurst, D., Movshon, J., Dean, A. (1983). The statistical reliability of signals in single neurons in cat and monkey visual cortex. Vision Research, 23(8), 775-785. · doi:10.1016/0042-6989(83)90200-6
[62] Tsodyks, M., Pawelzik, K., Markram, H. (1998). Neural networks with dynamic synapses. Neural Computation, 10(4), 821-835. · doi:10.1162/089976698300017502
[63] Tsodyks, M., Uziel, A., Markram, H. (2000). Synchrony generation in recurrent networks with frequency-dependent synapses. Journal Neuroscience, 20(1), 825-835.
[64] Tsodyks, M.V., & Markram, H. (1997). The neural code between neocortical pyramidal neurons depends on neurotransmitter release probability. Proceedings of the National Academy of Sciences of the United States of America, 94(2), 719-723. · doi:10.1073/pnas.94.2.719
[65] Van Vreeswijk, C., & Sompolinsky, H. (1996). Chaos in neuronal networks with balanced excitatory and inhibitory activity. Science, 274(5293), 1724-1726. · doi:10.1126/science.274.5293.1724
[66] Varela, J.A., Sen, K., Gibson, J., Fost, J., Abbott, L.F., Nelson, S.B. (1997). A quantitative description of short-term plasticity at excitatory synapses in layer 2/3 of rat primary visual cortex. Journal of Neuroscience, 17(20), 7926-7940.
[67] Vere-Jones, D. (1966). Simple stochastic models for the release of quanta of transmitter from a nerve terminal. Australian & New Zealand Journal of Statistics, 8(2), 53-63. · doi:10.1111/j.1467-842X.1966.tb00164.x
[68] Vreeswijk, C., & Sompolinsky, H. (1998). Chaotic balanced state in a model of cortical circuits. Neural Computation, 10(6), 1321-1371. · doi:10.1162/089976698300017214
[69] Wang, X.J. (1999). Fast burst firing and short-term synaptic plasticity: a model of neocortical chattering neurons. Journal of Neuroscience, 89(2), 347-362. · doi:10.1016/S0306-4522(98)00315-7
[70] Zador, A. (1998). Impact of synaptic unreliability on the information transmitted by spiking neurons. Journal of Neurophysiology, 79(3), 1219.
[71] Zohary, E., Shadlen, M., Newsome, W. (1994). Correlated neuronal discharge rate and its implications for psychophysical performance. Nature, 370(6485), 140-143. doi:10.1038/370140a0. · doi:10.1038/370140a0
[72] Zucker, R., & Regehr, W. (2002). Short-term synaptic plasticity. Annual Review of Physiology, 64(1), 355-405. · doi:10.1146/annurev.physiol.64.092501.114547
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.