×

Endotrivial modules over groups with quaternion or semi-dihedral Sylow 2-subgroup. (English) Zbl 1276.20007

In this paper, the authors determine the group \(T(G)\) of endotrivial \(kG\)-modules for an algebraically closed field \(k\) of characteristic 2 and a group \(G\) whose Sylow 2-subgroups are either semi-dihedral or generalized quaternion.
Recall that a \(kG\)-module \(M\) is said to be endotrivial if its endomorphism algebra \(\mathrm{End}_k(M)\cong M^*\otimes_kM\) is, as a \(kG\)-module, stably isomorphic to the trivial simple \(kG\)-module \(k\). If \(M\) is an endotrivial \(kG\)-module, then there exists a unique (up to isomorphism) indecomposable endotrivial \(kG\)-module \(M_0\) such that \(M\) is stably isomorphic to \(M_0\). Two endotrivial \(kG\)-modules \(M\) and \(N\) are said to be equivalent if \(M_0\cong N_0\). The set \(T(G)\) is defined to be the set of all equivalence classes of endotrivial \(kG\)-modules, which becomes an Abelian group using the tensor product \(\otimes_k\).
Let \(P\) be a Sylow 2-subgroup of \(G\), which is by assumption either semi-dihedral or generalized quaternion. In both cases, the authors prove that the restriction map \(T(G)\to T(P)\) is surjective. They then determine the group \(T(G)\) in detail. In the semi-dihedral case, the key ingredient in the proofs is the theory of almost split sequences. In particular, they use that there exists an almost split sequence whose middle term is stably isomorphic to the heart \(\mathrm{rad}(Q_k)/\mathrm{soc}(Q_k)\) of the projective cover \(Q_k\) of the trivial module \(k\). In the quaternion case, they first analyze the case when the unique involution \(z\) of \(P\) is central in \(G\). For the general case, they use that the centralizer of \(z\) is a strongly 2-embedded subgroup of \(G\). They moreover show that there are always torsion endotrivial modules which are uniserial.

MSC:

20C20 Modular representations and characters
20C05 Group rings of finite groups and their modules (group-theoretic aspects)
16G70 Auslander-Reiten sequences (almost split sequences) and Auslander-Reiten quivers
19A22 Frobenius induction, Burnside and representation rings

Software:

Magma
Full Text: DOI

References:

[1] Auslander, M., Reiten, I.: Representation theory of Artin algebras IV. Invariants given by almost split sequences. Comm. Algebra 5, 443-518 (1977) · Zbl 0396.16007 · doi:10.1080/00927877708822180
[2] Benson, D. J.: Representation and Cohomology I, II. Cambridge Stud. Adv. Math. 30, 31, Cambridge Univ. Press (1991) · Zbl 0718.20001
[3] Bessenrodt, C.: Endotrivial modules and the Auslander-Reiten quiver. In: Representation Theory of Finite Groups and Finite-Dimensional Algebras, Progr. Math. 95, Birkhäuser, Basel, 317-326 (1991) · Zbl 0774.20006
[4] Bosma, W., Cannon, J.: Handbook on Magma Functions. Sydney Univ. (1996)
[5] Brauer, R., Suzuki, M.: On finite groups of even order whose 2-Sylow group is a quaternion group. Proc. Nat. Acad. Sci. U.S.A. 45, 1757-1759 (1959) · Zbl 0090.01901 · doi:10.1073/pnas.45.12.1757
[6] Carlson, J.: Constructing endotrivial modules. J. Pure Appl. Algebra 206, 83-110 (2006) · Zbl 1098.20004 · doi:10.1016/j.jpaa.2005.01.014
[7] Carlson, J., Hemmer, D., Mazza, N.: The group of endotrivial modules for the symmet- ric and alternating groups. Proc. Edinburgh Math. Soc. 53, 83-95 (2010) · Zbl 1217.20004 · doi:10.1017/S0013091508000618
[8] Carlson, J., Mazza, N., Nakano, D.: Endotrivial modules for finite groups of Lie type. J. Reine Angew. Math. 595, 93-119 (2006) · Zbl 1106.20007 · doi:10.1515/CRELLE.2006.045
[9] Carlson, J., Mazza, N., Nakano, D.: Endotrivial modules for the symmetric and alternating groups. Proc. Edinburgh Math. Soc. 52, 45-66 (2009) · Zbl 1165.20005 · doi:10.1017/S0013091506001179
[10] Carlson, J., Mazza, N., Thévenaz, J.: Endotrivial modules for p-solvable groups. Trans. Amer. Math. Soc. 363, 4979-4996 (2011) · Zbl 1250.20007 · doi:10.1090/S0002-9947-2011-05307-9
[11] Carlson, J., Thévenaz, J.: Torsion endotrivial modules. Algebras Represent. Theory 3, 303- 335 (2000) · Zbl 0970.20004 · doi:10.1023/A:1009988424910
[12] Carlson, J., Thévenaz, J.: The classification of endo-trivial modules. Invent. Math. 158, 389- 411 (2004) · Zbl 1110.20004 · doi:10.1007/s00222-004-0385-0
[13] Carlson, J., Thévenaz, J.: The classification of torsion endotrivial modules. Ann. of Math. (2) 165, 823-883 (2005) · Zbl 1110.20005 · doi:10.4007/annals.2005.162.823
[14] Carlson, J., Townsley, L., Valeri-Elizondo, L., Zhang, M.: Cohomology Rings of Finite Groups. With an appendix: Calculations of Cohomology Rings of Groups of Order Divid- ing 64. Kluwer, Dordrecht (2003) · Zbl 1056.20039
[15] Dade, E. C.: Endo-permutation modules over p-groups, I, II. Ann. of Math. 107, 459-494 (1978), 108, 317-346 (1978) · Zbl 0404.16003 · doi:10.2307/1971169
[16] Dade, E. C.: Une extension de la théorie de Hall et Higman. J. Algebra 20, 570-609 (1972) · Zbl 0246.20014 · doi:10.1016/0021-8693(72)90073-7
[17] Erdmann, K.: Algebras and quaternion defect groups. I, II. Math. Ann. 281, 545-560, 561- 582 (1988) · Zbl 0655.16011 · doi:10.1007/BF01456838
[18] Erdmann, K.: Algebras and semidihedral defect groups. I. Proc. London Math. Soc. (3) 57, 109-150 (1988) · Zbl 0648.20007 · doi:10.1112/plms/s3-57.1.109
[19] Erdmann, K., Algebras and semidihedral defect groups. II. Proc. London Math. Soc. (3) 60, 123-165 (1990) · Zbl 0687.20006 · doi:10.1112/plms/s3-60.1.123
[20] Erdmann, K.: Blocks of Tame Representation Type and Related Algebras. Lectures Notes in Math. 1428, Springer (1990) · Zbl 0696.20001 · doi:10.1007/BFb0084003
[21] Gorenstein, D.: Finite Groups. Chelsea, New York (1980) · Zbl 0463.20012
[22] Olsson, J. B.: On 2-blocks with quaternion and quasidihedral defect groups. J. Algebra 36, 212-241 (1975) · Zbl 0314.20009 · doi:10.1016/0021-8693(75)90099-X
[23] Webb, P.: The Auslander-Reiten quiver of a finite group. Math. Z. 179, 97-121 (1982) · Zbl 0479.20008 · doi:10.1007/BF01173918
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.