×

Precise asymptotics for beta ensembles. (English) Zbl 1276.15020

The edge properties of the spectrum of random matrices are investigated. The paper extends results by Z. Su [Acta Math. Sin., Engl. Ser. 24, No. 6, 971–982 (2008; Zbl 1154.60034)]) who first obtained precise asymptotic results for the largest eigenvalues of the Gaussian unitary ensemble and of the Laguerre unitary ensemble for \(\beta = 2\). The new results are obtained for both the largest eigenvalues and the smallest eigenvalues of the \(\beta\)-Hermite and \(\beta\)-Laguerre ensembles using the general \(\beta\) Tracy-Widom law together with the results for small deviation inequalities for random matrices in the paper by M. Ledoux and B. Rider [Electron. J. Probab. 15, 1319–1343 (2010; Zbl 1228.60015)].

MSC:

15B52 Random matrices (algebraic aspects)
60B20 Random matrices (probabilistic aspects)
15A42 Inequalities involving eigenvalues and eigenvectors
Full Text: DOI

References:

[1] G. W. Anderson, A. Guionnet and O. Zeitouni, An Introduction to Random Matrices, Cambridge University Press, Cambridge, (2009). · Zbl 1184.15023
[2] G. Aubrun, A sharp small deviation inequality for the largest eigenvalu of a random matrix, Lect. Notes Math., 1857 (2005), 320–337. · Zbl 1070.15013
[3] Z. D. Bai, Methodologies in spectral analysis of large dimensional random matrices, a Review, Stat. Sin., 9(1999), 611–662. · Zbl 0949.60077
[4] Z. D. Bai and J. Silverstein, Spectral Analysis of Large Dimensional Random Matrices, Science Press, Beijing, (2010). · Zbl 1301.60002
[5] J. Baik, P. Deift and K. Johansson, On the distribution of the length of the longest increasing subsequence of random permutations, J. Amer. Math. Soc, 12 (1999), 1119–1178. · Zbl 0932.05001 · doi:10.1090/S0894-0347-99-00307-0
[6] J. Baik, P. Deift, K. Mclaughlin, P. Miller and X. Zhou, Optimal tail estimates for directed last passage site percolation with geometric random variables, Adv. Theor. Math. Phys., 5 (2001), 1207–1250. · Zbl 1016.15022
[7] I. Dumitriu and A. Edelman, matrix models for beta ensembles, J. Math. Phys., 43, (2002), 5830–5847. · Zbl 1060.82020 · doi:10.1063/1.1507823
[8] F. J. Dyson, The Threefold Way. Algebraic structure of symmetry groups and ensembles in quantum mechanics, J. Math. Phys., 3 (1962), 1199–1215. · Zbl 0134.45703 · doi:10.1063/1.1703863
[9] O. N. Feldheim and S. Sodin, A universality result for the smallest eigenvalues of certain sample covariance matrices, Geom. Funct. Anal, 20 (2010), 88–123. · Zbl 1198.60011 · doi:10.1007/s00039-010-0055-x
[10] P. J. Forrester, Log-Gases and Random Matrices, London Mathematical Society Monographs, Princeton University Press, (2010). · Zbl 1217.82003
[11] F. B. Hildebrand, Introduction to Numerical Analysis, 2nd edition, Dover Publishers, (1987). · Zbl 0641.65001
[12] T. Jiang, Limit Theorems for Beta-Jacobi Ensembles, (2009), Preprint, To appear in Bernoulli, http://arxiv.org/abs/0911.2262 . · Zbl 1190.60023
[13] K. Johansson, Shape fluctuations and random matrices, Comm. Math. Phys., 209 (2000), 437–476. · Zbl 0969.15008 · doi:10.1007/s002200050027
[14] M. Ledoux, Deviation inequalities on largest eigenvalues, Lect. Notes Math., 1910 (2007), 165–294.
[15] M. Ledoux and B. Rider, Small deviations for beta ensembles, Electron. J. Probab., 15(2010), 1319–1343. · Zbl 1228.60015 · doi:10.1214/EJP.v15-798
[16] M. Mehta, Random Matrices (Third ed.), Elsevier/Academic Press, (2004).
[17] S. Péché, Universality results for the largest eigenvalues of some sample covariance matrix ensembles, Probab. Theor. Rel, 143 (2009), 481–516. · Zbl 1167.62019 · doi:10.1007/s00440-007-0133-7
[18] J. Ramirez, B. Rider and B. Virág, Beta ensembles, stochastic airy spectrum and a diffusion, J. Amer. Math. Soc, 24 (2011), 919–944. · Zbl 1239.60005 · doi:10.1090/S0894-0347-2011-00703-0
[19] A. Soshnikov, Universality at the edge of the spectrum in wigner random matrices, Comm. Math. Phys., 207(1999), 697–733. · Zbl 1062.82502 · doi:10.1007/s002200050743
[20] A. Soshnikov, A note on universality of the distribution of the largest eigenvalues in certain sample covariance matrices, J. Stat. Phys., 108 (2002), 1033–1056. · Zbl 1018.62042 · doi:10.1023/A:1019739414239
[21] Z. G. Su, Precise Asymptotics for random matrices and random growth models, Acta. Math. Sci., 24 (2008), 971–982. · Zbl 1154.60034 · doi:10.1007/s10114-007-6365-8
[22] C. Tracy and H. Widom, Level-spacing distribution and the airy kernel, Comm. Math. Phys., 59 (1994), 151–174. · Zbl 0789.35152 · doi:10.1007/BF02100489
[23] C. Tracy and H. Widom, On orthogonal and symplectic matrix ensembles, Comm. Math. Phys., 177 (1996), 727–754. · Zbl 0851.60101 · doi:10.1007/BF02099545
[24] X. Zeng and Z. Hou, The universality of tracy-widom F 2 distribution, Adv. in Math. (China), 41 (2012), 513–530. · Zbl 1274.60024
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.