×

Quantum capacity under adversarial quantum noise: arbitrarily varying quantum channels. (English) Zbl 1275.81012

The authors investigate entanglement transmission over arbitrarily varying quantum channel (AVQC). Such transmission involves an unknown channel in the presence of a third party (the adversary) which may choose a memoryless but nonstationary channel without informing the legitimate sender and receiver about the particular choice made. A quantum version of Ahlswede’s dichotomy for classical arbitrarily varing channels is derived and it is proved that the capacity for entanglement transmission of an AVQC always equals its strong subspace transmission capacity, a result which is in contrast to the classical case. As an application the authors calculate the quantum capacity of finite AVQC consisting of quantum erasure channels.

MSC:

81P40 Quantum coherence, entanglement, quantum correlations
94A40 Channel models (including quantum) in information and communication theory
81P45 Quantum information, communication, networks (quantum-theoretic aspects)
46G10 Vector-valued measures and integration

References:

[1] Ahlswede R.: A Note on the Existence of the Weak Capacity for Channels with Arbitrarily Varying Channel Probability Functions and Its Relation to Shannon’s Zero Error Capacity. The Annals of Mathematical Statistics 41(3), 1027–1033 (1970) · Zbl 0199.54102 · doi:10.1214/aoms/1177696979
[2] Ahlswede R.: Elimination of Correlation in Random Codes for Arbitrarily Varying Channels. Z. Wahr. verw. Geb. 44, 159–175 (1978) · Zbl 0368.94012 · doi:10.1007/BF00533053
[3] Ahlswede R.: Coloring Hypergraphs: A New Approach to Multi-user Source Coding-II. J. Comb., Info. & Sys. Sci. 5(3), 220–268 (1980) · Zbl 0448.94002
[4] Ahlswede R.: Arbitrarily Varying Channels with States Sequence Known to the Sender. IEEE Trans. Inf. Th. 32, 621–629 (1986) · Zbl 0618.94008 · doi:10.1109/TIT.1986.1057222
[5] Ahlswede R., Blinovsky V.: Classical Capacity of Classical-Quantum Arbitrarily Varying Channels. IEEE Trans. Inf. Th. 53(2), 526–533 (2007) · Zbl 1310.94057 · doi:10.1109/TIT.2006.889004
[6] Ahlswede R., Wolfowitz J.: The Capacity of a Channel with Arbitrarily Varying Channel Probability Functions and Binary Output Alphabet. Z. Wahr. verw. Geb. 15, 186–194 (1970) · Zbl 0198.24003 · doi:10.1007/BF00534915
[7] Barnum H., Knill E., Nielsen M.A.: On Quantum Fidelities and Channel Capacities. IEEE Trans. Inf. Theory 46(4), 1317–1329 (2000) · Zbl 0999.94515 · doi:10.1109/18.850671
[8] Bennett C.H., DiVincenzo D.P., Smolin J.A.: Capacities of Quantum Erasure Channels. Phys. Rev. Lett. 78, 3217–3220 (1997) · Zbl 0944.81008 · doi:10.1103/PhysRevLett.78.3217
[9] Bjelaković I., Boche H., Nötzel J.: Quantum capacity of a class of compound channels. Phys. Rev. A 78, 042331 (2008) · Zbl 1367.81020 · doi:10.1103/PhysRevA.78.042331
[10] Bjelaković, I., Boche, H., Nötzel, J.: Entanglement transmission and generation under channel uncertainty: Universal quantum channel coding. Commun. Math. Phys. 292, 55–97 (2009); Bjelaković, I., Boche, H., Nötzel, J.: Erratum to ’Entanglement transmission and generation under channel uncertainty: Universal quantum channel coding’. Coummn. Math. Phys. · Zbl 1179.81049
[11] Blackwell D., Breiman L., Thomasian A.J.: The capacities of certain channel classes under random coding. Ann. Math. Stat. 31, 558–567 (1960) · Zbl 0119.13805 · doi:10.1214/aoms/1177705783
[12] Choi M.-D.: Completely Positive Linear Maps on Complex Matrices. Lin. Alg. App. 10, 285–290 (1975) · Zbl 0327.15018 · doi:10.1016/0024-3795(75)90075-0
[13] Csiszar, I., Körner, J.: Information Theory; Coding Theorems for Discrete Memoryless Systems. Budapest, New York: Akadémiai Kiadó, Academic Press Inc., 1981 · Zbl 0568.94012
[14] Csiszar I., Narayan P.: The Capacity of the Arbitrarily Varying Channel Revisited: Positivity, Constraints. IEEE Trans. Inf. Th. 34(2), 181–193 (1989) · Zbl 0652.94005 · doi:10.1109/18.2627
[15] Devetak I., Shor P.W.: The Capacity of a Quantum Channel for Simultaneous Transmission of Classical and Quantum Information. Commun. Math. Phys. 256(2), 287–303 (2005) · Zbl 1068.81010 · doi:10.1007/s00220-005-1317-6
[16] Duan, R., Severini, S., Winter, A.: Zero-error communication via quantum channels, non-commutative graphs and a quantum Lovász {\(\theta\)} function. http://arxiv.org/abs/1002.2514v2 [quant-ph], 2010
[17] Ericson T.: Exponential Error Bounds for Random Codes in the Arbitrarily Varying Channel. IEEE Trans. Inf. Th. 31(1), 42–48 (1985) · Zbl 0557.94010 · doi:10.1109/TIT.1985.1056995
[18] Fekete M.: Über die Verteilung der Wurzeln bei gewissen algebraischen Gleichungen mit ganzzahligen Koeffizienten. Math. Zeit. 17, 228 (1923) · JFM 49.0047.01 · doi:10.1007/BF01504345
[19] Gilbert E.N.: A comparison of signaling alphabets. Bell System Tech. J. 31, 504–522 (1952) · doi:10.1002/j.1538-7305.1952.tb01393.x
[20] Horodecki M., Horodecki P.: Reduction criterion of separability and limits for a class of distillation protocols. Phys. Rev. A 59(6), 4206 (1999) · Zbl 0959.81512 · doi:10.1103/PhysRevA.59.4206
[21] Horodecki M., Horodecki P., Horodecki R.: General teleportation channel, singlet fraction, and quasidistillation . Phys. Rev. A 60, 1888–1898 (1999) · Zbl 1005.81505 · doi:10.1103/PhysRevA.60.1888
[22] Kakutani S.: A Generalization of Brouwer’s Fixed Point Theorem. Duke Math. J. 8(3), 457–459 (1941) · JFM 67.0742.03 · doi:10.1215/S0012-7094-41-00838-4
[23] Kiefer J., Wolfowitz J.: Channels with arbitrarily varying channel probability functions. Inf. and Cont. 5, 44–54 (1962) · Zbl 0107.34503 · doi:10.1016/S0019-9958(62)90203-6
[24] Kitaev, A.Y., Shen, A.H., Vyalyi, M.N.: Classical and Quantum Computation. Graduate Studies in Mathematics 47, Providence, RI: Amer. Math. Soc., 2002 · Zbl 1022.68001
[25] Knill E., Laflamme R.: Theory of quantum error-correcting codes. Phys. Rev. A 55(2), 900–911 (1997) · doi:10.1103/PhysRevA.55.900
[26] Körner J., Orlitsky A.: Zero-error Information Theory. IEEE Trans. Inf. Theory 44(6), 2207–2229 (1998) · Zbl 0932.94019 · doi:10.1109/18.720537
[27] Leung D., Smith G.: Continuity of quantum channel capacities. Commun. Math. Phys. 292, 201–215 (2009) · Zbl 1179.81035 · doi:10.1007/s00220-009-0833-1
[28] Lieb E.H., Ruskai M.B.: Proof of the strong subadditivity of quantum-mechanical entropy. J. Math. Phys. 14, 1938 (1973) · doi:10.1063/1.1666274
[29] Matousek, J.: Lectures on Discrete Geometry. Graduate Texts in Mathematics. 212, Berlin-Heidelberg-New York: Springer, 2002
[30] Milman, V.D., Schechtman, G.: Asymptotic Theory of Finite Dimensional Normed Spaces. Lecture Notes in Mathematics, 1200, Berlin-Heidelberg-New York: Springer-Verlag, 1986 · Zbl 0606.46013
[31] Paulsen, V.: Completely Bounded Maps and Operator Algebras. Cambridge Studies in Advanced Mathematics 78, Cambridge: Cambridge University Press, 2002 · Zbl 1029.47003
[32] Pólya G., Szegö V. Problems and Theorems in Analysis I. Berlin-Heidelberg-New York: Springer, 1998
[33] Schumacher B., Nielsen M.A.: Quantum data processing and error correction. Phys. Rev. A 54(4), 2629 (1996) · doi:10.1103/PhysRevA.54.2629
[34] Shannon, C.E.: The zero error capacity of a noisy channel. IRE Trans. Inf. Th. IT-2, 8–19 (1956)
[35] von Neumann J.: Zur Theorie der Gesellschaftsspiele. Math. Ann. 100, 295–320 (1928) · JFM 54.0543.02 · doi:10.1007/BF01448847
[36] Webster R.: Convexity. Oxford University Press, Oxford (1994)
[37] Yard J., Devetak I., Hayden P.: Capacity theorems for quantum multiple access channels: Classical-quantum and quantum-quantum capacity Regions. IEEE Trans. Inf. Th. 54, 3091 (2008) · Zbl 1328.94054 · doi:10.1109/TIT.2008.924665
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.