×

Delaying the onset of dynamic wetting failure through meniscus confinement. (English) Zbl 1275.76086

Summary: Dynamic wetting is crucial to processes where liquid displaces another fluid along a solid surface, such as the deposition of a coating liquid onto a moving substrate. Numerous studies report the failure of dynamic wetting past some critical process speed. However, the hydrodynamic factors that influence the transition to wetting failure remain poorly understood from an empirical and theoretical perspective. The objective of this investigation is to determine the effect of meniscus confinement on the onset of dynamic wetting failure. A novel experimental system is designed to simultaneously view confined and unconfined wetting systems as they approach wetting failure. The experimental apparatus consists of a scraped steel roll that rotates into a bath of glycerol. Confinement is imposed via a gap formed between a coating die and the roll surface. Flow visualization is used to record the critical roll speed at which wetting failure occurs. Comparison of the confined and unconfined data shows a clear increase in the relative critical speed as the meniscus becomes more confined. A hydrodynamic model for wetting failure is developed and analysed with (i) lubrication theory and (ii) a two-dimensional finite-element method (FEM). Both approaches do a remarkable job of matching the observed confinement trend, but only the two-dimensional model yields accurate estimates of the absolute values of the critical speeds due to the highly two-dimensional nature of the stress field in the displacing liquid. The overall success of the hydrodynamic model suggests a wetting failure mechanism primarily related to viscous bending of the meniscus.

MSC:

76D45 Capillarity (surface tension) for incompressible viscous fluids
76D05 Navier-Stokes equations for incompressible viscous fluids
76M10 Finite element methods applied to problems in fluid mechanics
76-05 Experimental work for problems pertaining to fluid mechanics

References:

[1] DOI: 10.1007/978-94-011-5342-3_3 · doi:10.1007/978-94-011-5342-3_3
[2] DOI: 10.1038/282489a0 · doi:10.1038/282489a0
[3] DOI: 10.1063/1.2195466 · doi:10.1063/1.2195466
[4] DOI: 10.1063/1.870063 · Zbl 1147.76330 · doi:10.1063/1.870063
[5] DOI: 10.1016/0021-9991(92)90273-2 · Zbl 0743.76050 · doi:10.1016/0021-9991(92)90273-2
[6] DOI: 10.1017/S0022112082000949 · doi:10.1017/S0022112082000949
[7] DOI: 10.1016/j.jcis.2006.03.051 · doi:10.1016/j.jcis.2006.03.051
[8] DOI: 10.1016/0009-2509(84)80069-X · doi:10.1016/0009-2509(84)80069-X
[9] Miyamoto, Liquid Film Coating pp 461– (1997)
[10] Abràmoff, Biophoton. Intl 11 pp 36– (2004)
[11] DOI: 10.1103/RevModPhys.81.739 · doi:10.1103/RevModPhys.81.739
[12] DOI: 10.1016/j.jcis.2011.06.029 · doi:10.1016/j.jcis.2011.06.029
[13] DOI: 10.1016/0009-2509(80)80008-X · doi:10.1016/0009-2509(80)80008-X
[14] DOI: 10.1140/epjst/e2011-01434-y · doi:10.1140/epjst/e2011-01434-y
[15] DOI: 10.1017/S0022112080001838 · Zbl 0456.76022 · doi:10.1017/S0022112080001838
[16] DOI: 10.1137/0907074 · Zbl 0631.65052 · doi:10.1137/0907074
[17] DOI: 10.1016/j.colsurfa.2007.08.027 · doi:10.1016/j.colsurfa.2007.08.027
[18] DOI: 10.1016/0021-9797(85)90144-4 · doi:10.1016/0021-9797(85)90144-4
[19] DOI: 10.1103/PhysRevE.73.041606 · doi:10.1103/PhysRevE.73.041606
[20] Lauga, Handbook of Experimental Fluid Dynamics (2005)
[21] DOI: 10.1016/0009-2509(75)85044-5 · doi:10.1016/0009-2509(75)85044-5
[22] DOI: 10.1146/annurev.fluid.36.050802.122049 · Zbl 1081.76009 · doi:10.1146/annurev.fluid.36.050802.122049
[23] DOI: 10.1063/1.3484276 · doi:10.1063/1.3484276
[24] DOI: 10.1007/BF01012963 · doi:10.1007/BF01012963
[25] Kistler, Wettability pp 311– (1993)
[26] DOI: 10.1016/0009-2509(88)85110-8 · doi:10.1016/0009-2509(88)85110-8
[27] DOI: 10.1016/0021-8502(88)90219-4 · doi:10.1016/0021-8502(88)90219-4
[28] DOI: 10.1002/fld.2603 · Zbl 1309.76132 · doi:10.1002/fld.2603
[29] DOI: 10.1017/S0022112004000643 · Zbl 1131.76316 · doi:10.1017/S0022112004000643
[30] DOI: 10.1063/1.1946607 · Zbl 1187.76496 · doi:10.1063/1.1946607
[31] DOI: 10.1016/0021-9797(71)90188-3 · doi:10.1016/0021-9797(71)90188-3
[32] DOI: 10.1063/1.2722767 · Zbl 1146.76545 · doi:10.1063/1.2722767
[33] DOI: 10.1016/0021-9797(75)90225-8 · doi:10.1016/0021-9797(75)90225-8
[34] DOI: 10.1103/PhysRevLett.96.174504 · doi:10.1103/PhysRevLett.96.174504
[35] DOI: 10.1007/978-94-011-5342-3_12 · doi:10.1007/978-94-011-5342-3_12
[36] DOI: 10.1017/S0022112007005216 · Zbl 1175.76046 · doi:10.1017/S0022112007005216
[37] DOI: 10.1002/aic.690330116 · doi:10.1002/aic.690330116
[38] DOI: 10.1063/1.2913675 · Zbl 1182.76710 · doi:10.1063/1.2913675
[39] DOI: 10.1002/aic.690280314 · doi:10.1002/aic.690280314
[40] DOI: 10.1016/S0021-9797(03)00347-3 · doi:10.1016/S0021-9797(03)00347-3
[41] DOI: 10.1038/35001043 · doi:10.1038/35001043
[42] DOI: 10.1103/RevModPhys.57.827 · doi:10.1103/RevModPhys.57.827
[43] DOI: 10.1021/j150374a008 · doi:10.1021/j150374a008
[44] DOI: 10.1016/0021-9991(80)90091-1 · Zbl 0486.76064 · doi:10.1016/0021-9991(80)90091-1
[45] DOI: 10.1103/PhysRevE.79.066311 · doi:10.1103/PhysRevE.79.066311
[46] Shikhmurzaev, Capillary Flows with Forming Interfaces (2008) · Zbl 1165.76001
[47] DOI: 10.1063/1.2009007 · Zbl 1187.76135 · doi:10.1063/1.2009007
[48] DOI: 10.1016/0301-9322(93)90090-H · Zbl 1144.76452 · doi:10.1016/0301-9322(93)90090-H
[49] DOI: 10.1063/1.1776071 · Zbl 1187.76134 · doi:10.1063/1.1776071
[50] DOI: 10.1017/S0022112096001966 · doi:10.1017/S0022112096001966
[51] DOI: 10.1007/978-94-011-5342-3_9 · doi:10.1007/978-94-011-5342-3_9
[52] DOI: 10.1088/0034-4885/68/12/R05 · doi:10.1088/0034-4885/68/12/R05
[53] Blake, Wettability pp 249– (1993)
[54] DOI: 10.1002/aic.690461003 · doi:10.1002/aic.690461003
[55] DOI: 10.1017/S0022112009007022 · Zbl 1181.76011 · doi:10.1017/S0022112009007022
[56] DOI: 10.1016/j.ces.2007.09.045 · doi:10.1016/j.ces.2007.09.045
[57] DOI: 10.1017/jfm.2011.211 · Zbl 1241.76419 · doi:10.1017/jfm.2011.211
[58] DOI: 10.1002/aic.690350912 · doi:10.1002/aic.690350912
[59] DOI: 10.1016/j.ces.2010.07.017 · doi:10.1016/j.ces.2010.07.017
[60] DOI: 10.1017/S0022112008003649 · Zbl 1156.76024 · doi:10.1017/S0022112008003649
[61] DOI: 10.1017/S0022112074001261 · Zbl 0282.76004 · doi:10.1017/S0022112074001261
[62] DOI: 10.1006/jcis.1995.0015 · doi:10.1006/jcis.1995.0015
[63] DOI: 10.1146/annurev.fl.11.010179.002103 · doi:10.1146/annurev.fl.11.010179.002103
[64] DOI: 10.1016/S0894-1777(02)00168-1 · doi:10.1016/S0894-1777(02)00168-1
[65] DOI: 10.1017/S0022112008000979 · Zbl 1151.76317 · doi:10.1017/S0022112008000979
[66] DOI: 10.1146/annurev.matsci.38.060407.130231 · doi:10.1146/annurev.matsci.38.060407.130231
[67] DOI: 10.1017/S0022112086000332 · Zbl 0597.76102 · doi:10.1017/S0022112086000332
[68] DOI: 10.1103/PhysRevLett.103.114501 · doi:10.1103/PhysRevLett.103.114501
[69] DOI: 10.1103/PhysRevLett.86.4290 · doi:10.1103/PhysRevLett.86.4290
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.