×

Exact Floquet theory for waves over arbitrary periodic topographies. (English) Zbl 1275.76053

Summary: We consider linear waves propagating over periodic topographies of arbitrary amplitude and wave form, generalizing the method in [the authors, J. Fluid Mech. 593, 209–234 (2007; Zbl 1128.76012)]. By a judicious construction of a conformal map from the flow domain to a uniform strip, exact solutions of Floquet type can be developed in the mapped plane. These Floquet solutions, in an essentially analytical form, are analogous to the complete set of flat-bottom propagating and evanescent waves. Therefore they can be used as a basis for the solutions of boundary value problems involving a wavy topography with a constant mean water depth. Various concrete examples are given and quantitative results are discussed. Comparisons with experimental data are made, and qualitative agreement is achieved.

MSC:

76B15 Water waves, gravity waves; dispersion and scattering, nonlinear interaction
86A05 Hydrology, hydrography, oceanography

Citations:

Zbl 1128.76012
Full Text: DOI

References:

[1] DOI: 10.1017/S0022112010002582 · Zbl 1205.76066 · doi:10.1017/S0022112010002582
[2] Complex Analysis (1953)
[3] Eur. J. Mech. B 11 pp 213– (1992)
[4] DOI: 10.1017/S0022112003004208 · Zbl 1055.76005 · doi:10.1017/S0022112003004208
[5] DOI: 10.1016/0378-3839(92)90022-M · doi:10.1016/0378-3839(92)90022-M
[6] Methods of Mathematical Physics (1950)
[7] DOI: 10.1017/S0022112099007168 · Zbl 0959.76011 · doi:10.1017/S0022112099007168
[8] DOI: 10.1017/S0022112092002052 · Zbl 0754.76011 · doi:10.1017/S0022112092002052
[9] J. Fluid Mech. 593 pp 209– (2007)
[10] DOI: 10.1017/S0022112095002151 · Zbl 0849.76008 · doi:10.1017/S0022112095002151
[11] DOI: 10.1038/296343a0 · doi:10.1038/296343a0
[12] DOI: 10.1007/3-540-45670-8 · doi:10.1007/3-540-45670-8
[13] DOI: 10.1017/S0022112092000478 · doi:10.1017/S0022112092000478
[14] DOI: 10.1017/S0022112085000714 · Zbl 0588.76022 · doi:10.1017/S0022112085000714
[15] Il Nuovo Cimento 13C pp 823– (1990) · doi:10.1007/BF02511999
[16] DOI: 10.1017/S002211209400368X · Zbl 0832.76007 · doi:10.1017/S002211209400368X
[17] Hill’s Equation (1979)
[18] DOI: 10.1017/S0022112088000254 · Zbl 0643.76012 · doi:10.1017/S0022112088000254
[19] DOI: 10.1017/S0022112086001994 · Zbl 0596.76017 · doi:10.1017/S0022112086001994
[20] DOI: 10.1016/0377-0265(82)90029-X · doi:10.1016/0377-0265(82)90029-X
[21] DOI: 10.1017/S0022112099004978 · Zbl 0959.76009 · doi:10.1017/S0022112099004978
[22] A Course of Modern Analysis (1927)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.