×

On the self-similarity problem for smooth flows on orientable surfaces. (English) Zbl 1275.37024

The paper studies aspects of self-similarity for special flows on surfaces. More precisely, the author considers smooth measure-preserving flows on compact connected orientable surfaces of genus at least \(2\) with a finite number of non-degenerate singular points and no saddle connections. It is shown that in this class there exist flows with no self-similarities, that is, flows \(\{T_t\}_{t\in {\mathbb R}}\) such that \(\{T_t\}_{t\in {\mathbb R}}\) and \(\{T_{st}\}_{t\in {\mathbb R}}\) are not measure-theoretical isomorphic, for any \(s \in {\mathbb R} \setminus\{-1,1\}\). This settles an open problem which was raised by K. Frączek and M. Lemańczyk [Proc. Lond. Math. Soc. (3) 99, No. 3, 658–696 (2009; Zbl 1186.37008)].
The idea of the proof is to build special flows over interval exchange transformations under roof functions with symmetric logarithmic singularities. For these flows, it is shown that they are neither partially rigid nor spectral self-similar, which then allows to deduce the desired non-self-similarity property.

MSC:

37E35 Flows on surfaces
37C20 Generic properties, structural stability of dynamical systems
37E15 Combinatorial dynamics (types of periodic orbits)
37E05 Dynamical systems involving maps of the interval

Citations:

Zbl 1186.37008

References:

[1] DOI: 10.1017/S0143385797086215 · Zbl 0958.37002 · doi:10.1017/S0143385797086215
[2] DOI: 10.1007/BF02259620 · Zbl 0991.37003 · doi:10.1007/BF02259620
[3] Rauzy, Acta Arith. 34 pp 315– (1979)
[4] Mayer, Rec. Math. [Mat. Sbornik] N.S. 12 pp 71– (1943)
[5] DOI: 10.1090/S0894-0347-05-00490-X · Zbl 1112.37002 · doi:10.1090/S0894-0347-05-00490-X
[6] DOI: 10.1007/BF01390274 · Zbl 0395.28012 · doi:10.1007/BF01390274
[7] DOI: 10.1007/BF01692494 · Zbl 0146.28502 · doi:10.1007/BF01692494
[8] Kochergin, Mat. Zametki 19 pp 453– (1976)
[9] DOI: 10.1017/S0143385706000046 · Zbl 1096.37017 · doi:10.1017/S0143385706000046
[10] DOI: 10.1007/BF01236981 · Zbl 0278.28010 · doi:10.1007/BF01236981
[11] DOI: 10.4064/fm185-2-2 · Zbl 1093.37001 · doi:10.4064/fm185-2-2
[12] DOI: 10.1007/BF02760655 · Zbl 0437.28009 · doi:10.1007/BF02760655
[13] DOI: 10.4064/fm180-3-3 · Zbl 1047.37027 · doi:10.4064/fm180-3-3
[14] DOI: 10.1016/S1874-575X(06)80036-6 · doi:10.1016/S1874-575X(06)80036-6
[15] DOI: 10.1112/plms/pdp013 · Zbl 1186.37008 · doi:10.1112/plms/pdp013
[16] DOI: 10.1007/BF02385994 · Zbl 0401.28018 · doi:10.1007/BF02385994
[17] DOI: 10.1007/978-1-4615-6927-5 · doi:10.1007/978-1-4615-6927-5
[18] DOI: 10.1215/S0012-7094-85-05238-X · Zbl 0602.28009 · doi:10.1215/S0012-7094-85-05238-X
[19] DOI: 10.1007/BF01090671 · Zbl 0731.53066 · doi:10.1007/BF01090671
[20] DOI: 10.1007/s10883-009-9079-7 · Zbl 1203.37014 · doi:10.1007/s10883-009-9079-7
[21] DOI: 10.5802/aif.1517 · Zbl 0853.28007 · doi:10.5802/aif.1517
[22] Veršik, Zap. Naučn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 72 pp 26– (1977)
[23] DOI: 10.2307/1971391 · Zbl 0486.28014 · doi:10.2307/1971391
[24] Veech, Ergodic Theory and Dynamical Systems, I (College Park, Md., 1979–80) pp 113– (1981)
[25] DOI: 10.4007/annals.2011.173.3.10 · Zbl 1251.37003 · doi:10.4007/annals.2011.173.3.10
[26] DOI: 10.1007/s11005-005-0011-0 · Zbl 1105.37002 · doi:10.1007/s11005-005-0011-0
[27] Ryzhikov, Mat. Sb. 188 pp 67– (1997) · doi:10.4213/sm202
[28] Ryzhikov, Mat. Zametki 49 pp 98– (1991)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.