×

Lie 3-algebra and super-affinization of split-octonions. (English) Zbl 1274.81211

Summary: The purpose of this study is to extend the concept of a generalized Lie 3-algebra, known to the divisional algebra of the octonions \(\mathbb O\), to split-octonions \(\mathbb {SO}\), which is non-divisional. This is achieved through the unification of the product of both of the algebras in a single operation. Accordingly, a notational device is introduced to unify the product of both algebras. We verify that \(\mathbb{SO}\) is a Malcev algebra and we recalculate known relations for the structure constants in terms of the introduced structure tensor. Finally we construct the manifestly supersymmetric \(\mathcal N=1\mathbb{SO}\) affine superalgebra. An application of the split Lie 3-algebra for a Bagger and Lambert gauge theory is also discussed.

MSC:

81T60 Supersymmetric field theories in quantum mechanics
81T13 Yang-Mills and other gauge theories in quantum field theory
81R15 Operator algebra methods applied to problems in quantum theory
11R52 Quaternion and other division algebras: arithmetic, zeta functions
17A35 Nonassociative division algebras
17A70 Superalgebras

References:

[1] DOI: 10.1090/S0273-0979-01-00934-X · Zbl 1026.17001 · doi:10.1090/S0273-0979-01-00934-X
[2] DOI: 10.1103/PhysRevD.75.045020 · doi:10.1103/PhysRevD.75.045020
[3] Bagger J., JHEP 02 pp 105–
[4] DOI: 10.1103/PhysRevD.77.065008 · doi:10.1103/PhysRevD.77.065008
[5] DOI: 10.1103/PhysRevD.79.025002 · Zbl 1222.81264 · doi:10.1103/PhysRevD.79.025002
[6] Benichou R., JHEP 1004 pp 121–
[7] DOI: 10.1088/0305-4470/36/13/312 · Zbl 1040.37064 · doi:10.1088/0305-4470/36/13/312
[8] DOI: 10.1103/PhysRevD.78.066019 · doi:10.1103/PhysRevD.78.066019
[9] DOI: 10.1063/1.532950 · Zbl 0969.81004 · doi:10.1063/1.532950
[10] Duff M. J., Lect. Notes Phys. 755 pp 93–
[11] DOI: 10.1007/BF00402262 · Zbl 0692.22005 · doi:10.1007/BF00402262
[12] DOI: 10.1016/0550-3213(96)00088-0 · Zbl 1002.81507 · doi:10.1016/0550-3213(96)00088-0
[13] Gustavsson A., JHEP 04 pp 083–
[14] DOI: 10.1016/j.nuclphysb.2008.11.014 · Zbl 1194.81205 · doi:10.1016/j.nuclphysb.2008.11.014
[15] DOI: 10.1016/S0375-9601(01)00709-5 · Zbl 1036.81016 · doi:10.1016/S0375-9601(01)00709-5
[16] III W. D. L., JHEP 0911 pp 007–
[17] Gomis G. M. J., JHEP 06 pp 075–
[18] DOI: 10.1007/978-1-4612-0503-6 · doi:10.1007/978-1-4612-0503-6
[19] Krishnan C., JHEP 07 pp 005–
[20] DOI: 10.1016/0550-3213(83)90584-9 · doi:10.1016/0550-3213(83)90584-9
[21] Lee K., JHEP 04 pp 012–
[22] Lin H., JHEP 0807 pp 136–
[23] Lust D., Lecture Notes in Physics 346, in: Lectures on String Theory (1989)
[24] DOI: 10.4310/ATMP.1998.v2.n2.a1 · Zbl 0914.53047 · doi:10.4310/ATMP.1998.v2.n2.a1
[25] DOI: 10.1103/PhysRevD.7.2405 · Zbl 1027.70503 · doi:10.1103/PhysRevD.7.2405
[26] Aharony D. L. J. O., JHEP 10 pp 091–
[27] de Medeiros J. M. F.-O. P., JHEP 07 pp 111–
[28] de Medeiros J. M. F.-O. P., JHEP 08 pp 045–
[29] DOI: 10.1088/1751-8113/43/1/015205 · Zbl 1180.81116 · doi:10.1088/1751-8113/43/1/015205
[30] Sheikh-Jabbari M. M., JHEP 12 pp 111–
[31] Terashima S., JHEP 12 pp 059–
[32] DOI: 10.4310/ATMP.1998.v2.n2.a2 · Zbl 0914.53048 · doi:10.4310/ATMP.1998.v2.n2.a2
[33] DOI: 10.1016/j.physletb.2008.11.001 · doi:10.1016/j.physletb.2008.11.001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.