×

Generalized local induction equation, elliptic asymptotics, and simulating superfluid turbulence. (English) Zbl 1274.76155

Summary: We prove the generalized induction equation and the generalized local induction equation (GLIE), which replaces the commonly used local induction approximation (LIA) to simulate the dynamics of vortex lines and thus superfluid turbulence. We show that the LIA is, without in fact any approximation at all, a general feature of the velocity field induced by any length of a curved vortex filament. Specifically, the LIA states that the velocity field induced by a curved vortex filament is asymmetric in the binormal direction. Up to a potential term, the induced incompressible field is given by the Biot-Savart integral, where we recall that there is a direct analogy between hydrodynamics and magnetostatics. Series approximations to the Biot-Savart integrand indicate a logarithmic divergence of the local field in the binormal direction. While this is qualitatively correct, LIA lacks metrics quantifying its small parameters. Regardless, LIA is used in vortex filament methods simulating the self-induced motion of quantized vortices. With numerics in mind, we represent the binormal field in terms of incomplete elliptic integrals, which is valid for \(\mathbb{R}^{3}\). From this and known expansions we derive the GLIE, asymptotic for local field points. Like the LIA, generalized induction shows a persistent binormal deviation in the local field but unlike the LIA, the GLIE provides bounds on the truncated remainder. As an application, we adapt formulae from vortex filament methods to the GLIE for future use in these methods. Other examples we consider include vortex rings, relevant for both superfluid \({}^4\)He and Bose-Einstein condensates.{
©2012 American Institute of Physics}

MSC:

76A25 Superfluids (classical aspects)
76B47 Vortex flows for incompressible inviscid fluids
76F05 Isotropic turbulence; homogeneous turbulence
78A30 Electro- and magnetostatics
33E05 Elliptic functions and integrals

References:

[1] DOI: 10.1103/PhysRev.60.356 · Zbl 0027.18505 · doi:10.1103/PhysRev.60.356
[2] Landau L. D., Course of Theoretical Physics: Fluid Mechanics (1959)
[3] DOI: 10.1088/0953-8984/21/16/164220 · doi:10.1088/0953-8984/21/16/164220
[4] R. Feynman,Progress in Low Temperature Physics, Vol. 1 (Elsevier, 1955), pp. 17–53.
[5] DOI: 10.1007/BF02780991 · doi:10.1007/BF02780991
[6] Donnelly R. J., Quantized Vortices in Helium II (2005)
[7] DOI: 10.1007/3-540-45542-6 · doi:10.1007/3-540-45542-6
[8] DOI: 10.1098/rspa.1958.0007 · doi:10.1098/rspa.1958.0007
[9] DOI: 10.1103/PhysRevLett.38.551 · doi:10.1103/PhysRevLett.38.551
[10] DOI: 10.1103/PhysRevB.38.2398 · doi:10.1103/PhysRevB.38.2398
[11] DOI: 10.1007/3-540-45542-6_9 · doi:10.1007/3-540-45542-6_9
[12] DOI: 10.1103/PhysRevLett.103.045301 · doi:10.1103/PhysRevLett.103.045301
[13] DOI: 10.1016/0022-0396(88)90004-6 · Zbl 0675.76072 · doi:10.1016/0022-0396(88)90004-6
[14] DOI: 10.1007/978-1-4684-9290-3 · doi:10.1007/978-1-4684-9290-3
[15] DOI: 10.1146/annurev.fl.17.010185.002515 · doi:10.1146/annurev.fl.17.010185.002515
[16] DOI: 10.2307/2007617 · Zbl 0488.76024 · doi:10.2307/2007617
[17] DOI: 10.1103/PhysRevB.77.014527 · doi:10.1103/PhysRevB.77.014527
[18] DOI: 10.1103/PhysRevLett.87.155301 · doi:10.1103/PhysRevLett.87.155301
[19] DOI: 10.1038/352561a0 · doi:10.1038/352561a0
[20] DOI: 10.1017/S0022112065000915 · Zbl 0133.43803 · doi:10.1017/S0022112065000915
[21] DOI: 10.1063/1.1761268 · doi:10.1063/1.1761268
[22] DOI: 10.1017/CBO9780511800955 · Zbl 0958.76001 · doi:10.1017/CBO9780511800955
[23] DOI: 10.1137/0135013 · Zbl 0395.76024 · doi:10.1137/0135013
[24] DOI: 10.1016/0169-5983(96)82495-6 · Zbl 1006.01505 · doi:10.1016/0169-5983(96)82495-6
[25] DOI: 10.1016/0169-5983(88)90058-5 · doi:10.1016/0169-5983(88)90058-5
[26] DOI: 10.1002/qj.49712253214 · doi:10.1002/qj.49712253214
[27] DOI: 10.1017/CBO9780511613203 · Zbl 0983.76001 · doi:10.1017/CBO9780511613203
[28] DOI: 10.1007/BF03018608 · JFM 37.0764.01 · doi:10.1007/BF03018608
[29] DOI: 10.1017/S0022112091001143 · Zbl 0719.76020 · doi:10.1017/S0022112091001143
[30] DOI: 10.1098/rsta.1972.0055 · Zbl 0247.76015 · doi:10.1098/rsta.1972.0055
[31] DOI: 10.1016/0167-2789(91)90151-X · Zbl 0738.35063 · doi:10.1016/0167-2789(91)90151-X
[32] DOI: 10.1016/0167-2789(91)90035-8 · Zbl 0728.35090 · doi:10.1016/0167-2789(91)90035-8
[33] DOI: 10.1016/0167-2789(94)00119-7 · Zbl 0814.34040 · doi:10.1016/0167-2789(94)00119-7
[34] DOI: 10.1103/PhysRevLett.106.224501 · doi:10.1103/PhysRevLett.106.224501
[35] DOI: 10.1063/1.869473 · Zbl 1185.76669 · doi:10.1063/1.869473
[36] DOI: 10.1007/s10909-009-9914-y · doi:10.1007/s10909-009-9914-y
[37] DOI: 10.1016/S0079-6417(08)00001-2 · doi:10.1016/S0079-6417(08)00001-2
[38] G. L. Lamb,Elements of Soliton Theory(Wiley, 1986), Vol. 4, p. 316.
[39] Lamb H., Hydrodynamics (1916) · Zbl 0828.01012
[40] DOI: 10.1016/j.cam.2006.04.053 · Zbl 1118.33010 · doi:10.1016/j.cam.2006.04.053
[41] DOI: 10.1103/PhysRevLett.49.283 · doi:10.1103/PhysRevLett.49.283
[42] DOI: 10.1007/BF02787727 · Zbl 0075.04901 · doi:10.1007/BF02787727
[43] DOI: 10.1088/0953-8984/13/12/201 · doi:10.1088/0953-8984/13/12/201
[44] DOI: 10.1103/PhysRevB.62.3409 · doi:10.1103/PhysRevB.62.3409
[45] DOI: 10.1023/A:1004641912850 · doi:10.1023/A:1004641912850
[46] DOI: 10.1016/0021-9991(85)90148-2 · Zbl 0582.76038 · doi:10.1016/0021-9991(85)90148-2
[47] DOI: 10.1016/S0168-9274(99)00141-5 · Zbl 0986.76060 · doi:10.1016/S0168-9274(99)00141-5
[48] Hesthaven J. S., Nodal Discontinuous Galerkin Methods Algorithms, Analysis, and Applications (2008) · Zbl 1134.65068
[49] DOI: 10.1016/j.jcp.2010.05.028 · Zbl 1425.76224 · doi:10.1016/j.jcp.2010.05.028
[50] DOI: 10.1007/BF00692874 · Zbl 0818.33013 · doi:10.1007/BF00692874
[51] DOI: 10.1016/S0010-4485(01)00164-6 · doi:10.1016/S0010-4485(01)00164-6
[52] DOI: 10.1103/PhysRevLett.88.010405 · doi:10.1103/PhysRevLett.88.010405
[53] E. Varoquaux, O. Avenel, Y. Mukharsky, and P. Hakonen,Quantized Vortex Dynamics and Superfluid Turbulence, Lecture Notes in Physics, Vol. 571, edited by C. F. Barenghi, R. J. Donnelly, and W. F. Vinen (Springer Verlag, Berlin, 2001), p. 36. · doi:10.1007/3-540-45542-6_3
[54] DOI: 10.1103/PhysRevE.55.1617 · doi:10.1103/PhysRevE.55.1617
[55] DOI: 10.1103/PhysRevLett.71.1375 · doi:10.1103/PhysRevLett.71.1375
[56] DOI: 10.1016/S0997-7546(00)00123-0 · Zbl 1052.76592 · doi:10.1016/S0997-7546(00)00123-0
[57] T. Lipniacki,Quantized Vortex Dynamics and Superfluid Turbulence, Lecture Notes in Physics Vol. 571, edited by C. F. Barenghi, R. J. Donnelly, and W. F. Vinen (Springer Verlag, Berlin, 2001), p. 177. · Zbl 1172.82345 · doi:10.1007/3-540-45542-6_15
[58] DOI: 10.1088/0951-7715/17/6/006 · Zbl 1072.35152 · doi:10.1088/0951-7715/17/6/006
[59] DOI: 10.1016/j.physd.2009.03.006 · Zbl 1193.37128 · doi:10.1016/j.physd.2009.03.006
[60] DOI: 10.1073/pnas.0806002105 · doi:10.1073/pnas.0806002105
[61] DOI: 10.1007/s10909-010-0287-z · doi:10.1007/s10909-010-0287-z
[62] DOI: 10.1103/PhysRevA.82.033616 · doi:10.1103/PhysRevA.82.033616
[63] DOI: 10.1007/s10909-009-0045-2 · doi:10.1007/s10909-009-0045-2
[64] DOI: 10.1126/science.1060182 · doi:10.1126/science.1060182
[65] DOI: 10.1103/PhysRevA.67.033610 · doi:10.1103/PhysRevA.67.033610
[66] DOI: 10.1080/00018736000101169 · doi:10.1080/00018736000101169
[67] R. L. Ricca,Quantized Vortex Dynamics and Superfluid Turbulence, Lecture Notes in Physics Vol. 571, edited by C. F. Barenghi, R. J. Donnelly, and W. F. Vinen (Springer Verlag, Berlin, 2001), p. 366. · doi:10.1007/3-540-45542-6_36
[68] DOI: 10.1016/S0167-2789(01)00304-9 · Zbl 1001.57500 · doi:10.1016/S0167-2789(01)00304-9
[69] DOI: 10.1023/A:1023797226059 · doi:10.1023/A:1023797226059
[70] DOI: 10.1088/1751-8113/43/20/205501 · Zbl 1277.76027 · doi:10.1088/1751-8113/43/20/205501
[71] DOI: 10.1080/00018730802564254 · doi:10.1080/00018730802564254
[72] DOI: 10.1103/PhysRevA.85.033616 · doi:10.1103/PhysRevA.85.033616
[73] DOI: 10.1103/PhysRevA.67.015601 · doi:10.1103/PhysRevA.67.015601
[74] DOI: 10.1017/S0022112072002307 · Zbl 0237.76010 · doi:10.1017/S0022112072002307
[75] P. G. Grinevich and M. U. Schmidt, in Proceedings of the Workshop on Nonlinearity, Integrability and All That–Twenty Years after Needs’79 (World Scientific, 2000), pp. 139–145.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.