×

The UCM limit of the PTT equations at a re-entrant corner. (English) Zbl 1274.76105

Summary: We consider the Upper Convected Maxwell (UCM) limit of the Phan-Thien-Tanner (PTT) equations for steady planar flow around re-entrant corners. The PTT equations give the UCM equations in the limit of vanishing model parameter \(\kappa\), this dimensionless parameter being associated with the quadratic stress terms in the PTT model. We show that the critical length scale local to the corner is \(r=O\bigg(\kappa^{\frac{1}{2(1-\alpha)}}\bigg)\) as \(\kappa \to 0\), where \(\pi/\alpha\) is the re-entrant corner angle with \(\alpha\in [1/2,1)\) and \(r\) the radial distance. On distances far smaller than this we obtain the PTT \(\kappa=1\) problem, whilst on distances greater (but still small) we obtain the UCM problem \(\kappa=0\). This critical length scale is that on which intermediate behaviour of the PTT model is obtained where both linear and quadratic stress terms are present in the wall boundary layer equations. The double limit \(\kappa\to 0, r\to 0\) thus yields a nine region local asymptotic structure.

MSC:

76A10 Viscoelastic fluids

References:

[1] Aboubacar, M.; Matallah, H.; Tamaddon-Jahromi, H. R.; Webster, M. F.: Numerical prediction of extensional flows in contraction geometries: hybrid finite volume/element method, J. non-Newtonian fluid mech. 104, 125-164 (2002) · Zbl 1058.76573 · doi:10.1016/S0377-0257(02)00015-0
[2] Aboubacar, M.; Matallah, H.; Webster, M. F.: Highly elastic solutions for Oldroyd-B and phan-thien/tanner fluids with a finite volume/element method: planar contraction flows, J. non-Newtonian fluid mech. 103, 65-103 (2002) · Zbl 1143.76492 · doi:10.1016/S0377-0257(01)00164-1
[3] Alves, M. A.; Oliveira, P. J.; Pinho, F. T.: Benchmark solutions for the flow of Oldroyd-B and PTT fluids in planar contractions, J. non-Newtonian fluid mech. 110, 45-75 (2003) · Zbl 1027.76003 · doi:10.1016/S0377-0257(02)00191-X
[4] Alves, M. A.; Oliveira, P. J.; Pinho, F. T.: On the effect of contraction ratio in viscoelastic flow through abrupt contractions, J. non-Newtonian fluid mech. 122, 117-130 (2004) · Zbl 1143.76314 · doi:10.1016/j.jnnfm.2004.01.022
[5] Evans, J. D.: Re-entrant corner flows of the upper convected Maxwell fluid, Proc. R. Soc. A 461, 117-142 (2005) · Zbl 1145.76316 · doi:10.1098/rspa.2004.1335
[6] Evans, J. D.: Re-entrant corner flows of UCM fluids: the Cartesian stress basis, J. non-Newtonian fluid mech. 150, 116-138 (2008) · Zbl 1273.76037
[7] Evans, J. D.: Re-entrant corner flows of UCM fluids: the natural stress basis, J. non-Newtonian fluid mech. 150, 139-153 (2008) · Zbl 1273.76038
[8] Evans, J. D.; Sibley, D. N.: Re-entrant corner flows of PTT fluids in the Cartesian stress basis, J. non-Newtonian fluid mech. 153, 12-24 (2008) · Zbl 1293.76025
[9] Evans, J. D.; Sibley, D. N.: Re-entrant corner flows of PTT fluids in the natural stress basis, J. non-Newtonian fluid mech. 157, 79-91 (2009) · Zbl 1274.76021
[10] Evans, J. D.: Re-entrant corner behaviour of the PTT fluid with a solvent viscosity, J. non-Newtonian fluid mech. 165, 527-537 (2010) · Zbl 1274.76103
[11] Hagen, T.; Renardy, M.: Boundary layer analysis of the phan-thien – tanner and giesekus model in high weissenberg number flow, J. non-Newtonian fluid mech. 73, 181-189 (1997)
[12] Oliveira, P. J.; Pinho, F. T.: Plane contraction flows of the upper convected Maxwell and phan-thien – tanner fluids as predicted by a finite-volume method, J. non-Newtonian fluid mech. 88, 63-88 (1999) · Zbl 0974.76050 · doi:10.1016/S0377-0257(99)00017-8
[13] Phan-Thien, N.; Tanner, R. I.: A new constitutive equation derived from network theory, J. non-Newtonian fluid mech. 2, 353-365 (1977) · Zbl 0361.76011 · doi:10.1016/0377-0257(77)80021-9
[14] Renardy, M.: How to integrate the upper convected Maxwell (UCM) stresses near a singularity (and maybe elsewhere, too), J.non-Newtonian fluid mech. 52, 91-95 (1994)
[15] Renardy, M.: A matched solution for corner flow of the upper convected Maxwell fluid, J. non-Newtonian fluid mech. 58, 83-89 (1995)
[16] Renardy, M.: High weissenberg number boundary layers for the upper convected Maxwell fluid, J. non-Newtonian fluid mech. 68, 125-132 (1997)
[17] Renardy, M.: Re-entrant corner behaviour of the PTT fluid, J. non-Newtonian fluid mech. 69, 99-104 (1997)
[18] Renardy, M.: The high weissenberg number limit of the UCM model and the Euler equations, J. non-Newtonian fluid mech. 69, 293-301 (1997)
[19] R.I. Tanner, Engineering Rheology, OUP, 1985.
[20] Xue, S. -C.; Phan-Thien, N.; Tanner, R. I.: Three dimensional numerical simulations of viscoelastic flows through planar contractions, J. non-Newtonian fluid mech. 74, 195-245 (1998) · Zbl 0957.76042 · doi:10.1016/S0377-0257(97)00072-4
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.