×

Modelling, asymptotic analysis and simulation of the gas dynamics in a chimney. (English) Zbl 1274.35282

Summary: This paper presents a one dimensional model for the gas dynamics in a chimney. This is a prototype example of a small Mach number flow with strong heat sources. Due to the small Mach number of the gas flow an asymptotic model is derived from a fully compressible model, which then is compared to the original model and to the often used Boussinesq approximation. The Boussinesq approximation is shown to be inappropriate for this application, whereas the small Mach number asymptotic model we propose is shown to be a very good approximation. In particular it allows very fast numerical simulations. Finally, all this is underlined by numerical simulations where we validate the various models.

MSC:

35Q35 PDEs in connection with fluid mechanics
35C20 Asymptotic expansions of solutions to PDEs
76M45 Asymptotic methods, singular perturbations applied to problems in fluid mechanics
76N15 Gas dynamics (general theory)
80A20 Heat and mass transfer, heat flow (MSC2010)

References:

[1] McDermott H: Handbook of Ventilation for Contaminant Control. 1985.
[2] [http://www.eca-europe.org].
[3] [http://www.nace.org.uk]. · Zbl 1351.76264
[4] Boussinesq J: Théorie analytique de la chaleur: mise en harmonie avec la thermodynamique et avec la théorie mécanique de la lumière. Gauthier-Villars, Paris; 1903. [2] · JFM 32.0890.01
[5] Bois PA: Asymptotic aspects of the Boussinesq approximation for gases and liquids.Geophys Astrophys Fluid Dyn 1991,58(1-4):45-55. · doi:10.1080/03091929108227330
[6] Zeytounian RK: Joseph Boussinesq and his approximation: a contemporary view.C R, Méc 2003,331(8):575-586. · Zbl 1222.76005 · doi:10.1016/S1631-0721(03)00120-7
[7] Principe J, Codina R: Mathematical models for thermally coupled low speed flows.Adv Theor Appl Mech 2009, 2:93-112. · Zbl 1276.76068
[8] Rehm RG, Baum HR: The equations of motion for thermally driven, buoyant flows.J Res Natl Bur Stand 1978,83(3):297-308. · Zbl 0433.76072 · doi:10.6028/jres.083.019
[9] Paolucci S: Filtering of sound from the Navier-Stokes equations. NASA STI/Recon Technical Report N 1982, 83:26036. · Zbl 1124.76038
[10] Majda A, Sethian J: The derivation and numerical solution of the equations for zero Mach number combustion.Combust Sci Technol 1985,42(3-4):185-205. · doi:10.1080/00102208508960376
[11] Fedorchenko AT: A model of unsteady subsonic flow with acoustics excluded.J Fluid Mech 1997,334(1):135-155. · Zbl 0916.76025 · doi:10.1017/S0022112096004417
[12] Métivier G, Schochet S: The incompressible limit of the non-isentropic Euler equations.Arch Ration Mech Anal 2001, 158:61-90. · Zbl 0974.76072 · doi:10.1007/PL00004241
[13] Kuchling H: Taschenbuch der Physik. Fachbuchverl, Leipzig; 1994.
[14] Majda A: Compressible Fluid Flow and Systems of Conservation Laws in Several Space Variables. Springer, Berlin; 1984. [53] · Zbl 0537.76001
[15] [http://www.klb-klimaleichtblock.de]. · Zbl 0974.76072
[16] [http://www.schiedel.de].
[17] Heskestad, G., Fire plumes, flame height and air entrainment (2002), Quincy
[18] Hu LH, Li YZ, Wang HB, Huo R: An empirical equation to predict the growth coefficient of burning rate of wood cribs in a linear growth model.J Fire Sci 2006.,24(2): Article ID 153
[19] Mizuno T, Kawagoe K: Burning behaviour of upholstered chair: Part1.Fire Sci Technol 1984,4(1):37-45. · doi:10.3210/fst.4.37
[20] Styahar A: Modelling and simulation of chimney using one-dimensional solar updraft tower model. Master thesis. Department of Mathematics, University of Hamburg, 2010. · Zbl 1222.76005
[21] Lions PL: Mathematical Topics in Fluid Mechanics, Volume 2, Compressible Models. 1998. [Oxford Lecture Series in Mathematics and Its Applications 10] reprinted 2007 · Zbl 0908.76004
[22] Schochet S: The compressible Euler equations in a bounded domain: existence of solutions and the incompressible limit.Commun Math Phys 1986, 104:61-90. · Zbl 0612.76082 · doi:10.1007/BF01210792
[23] Birken P, Meister A: Stability of preconditioned finite volume schemes at low Mach numbers.BIT Numer Math 2005,45(3):463-480. · Zbl 1124.76038 · doi:10.1007/s10543-005-0009-0
[24] Klein R: Semi-implicit extension of a Godunov-type scheme based on low Mach number asymptotics I: one-dimesional flow.J Comput Phys 1995,121(2):213-237. · Zbl 0842.76053 · doi:10.1016/S0021-9991(95)90034-9
[25] Meister A: Asymptotic single and multiple scale expansions in the low Mach number limit.SIAM J Appl Math 1999,60(1):256-271. · Zbl 0941.35052 · doi:10.1137/S0036139998343198
[26] Müller B: Low mach number asymptotics of the Navier Stokes equations.J Eng Math 1998, 34:97-109. · Zbl 0924.76095 · doi:10.1023/A:1004349817404
[27] Gasser I: Modelling and simulation of a solar updraft tower.Kinet Relat Models 2009,2(1):191-204. · Zbl 1180.35425 · doi:10.3934/krm.2009.2.191
[28] Bauer M, Gasser I: Modeling, asymptotic analysis, and simulation of an energy tower.SIAM J Appl Math 2012,72(1):362-381. · Zbl 1316.80003 · doi:10.1137/100797977
[29] Gasser I, Rybicki M: Modeling and simulation of gas dynamics in an exhaust pipe.Appl Math Model 2013,73(5):2747-2764. · Zbl 1351.76264 · doi:10.1016/j.apm.2012.06.010
[30] Gasser I, Struckmeier J: An asymptotic-induced one-dimensional model to describe fires in tunnels.Math Methods Appl Sci 2002,25(14):1231-1249. · Zbl 1099.80007 · doi:10.1002/mma.337
[31] Batchelor GK: The conditions for dynamical similarity of motions of a frictionless perfect-gas atmosphere.Q J R Meteorol Soc 1953,79(340):224-235. · doi:10.1002/qj.49707934004
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.