×

Monomialization of morphisms and \(p\)-adic quantifier elimination. (English) Zbl 1274.14026

The paper provides a new and short proof of Macintyre’s Theorem on quantifier elimination for \(p\)-adic numbers. Macintyre’s result can be reformulated in algebraic terms as follows:
If \(f: X \to Y\) is a morphism of schemes of finite type over the field \(\mathbb Q_p\) of \(p\)-adic numbers (\(p\) a prime), then for every semi-algebraic subset \(A\) of \(X(\mathbb Q_p)\) the image \(f(A)\) is also a semi-algebraic subset of \(Y(\mathbb Q_p)\).
This is the statement proved in this paper. To do that, the author uses a version of monomialization that follows directly from the Weak Toroidalization Theorem of D. Abramovich and K. Karu [Invent. Math. 139, No. 2, 241–273 (2000; Zbl 0958.14006)], actually from an extension of this result to non-closed fields obtained by the author himself just with D. Abramovich and K. Karu [Manuscr. Math. 142, No. 1-2, 257–271 (2013; Zbl 1279.14020)].

MSC:

14G20 Local ground fields in algebraic geometry
11S05 Polynomials
11G25 Varieties over finite and local fields
11U09 Model theory (number-theoretic aspects)
03C10 Quantifier elimination, model completeness, and related topics

References:

[1] D. Abramovich and K. Karu, Weak semistable reduction in characteristic 0, Invent. Math. 139 (2000), no. 2, 241 – 273. · Zbl 0958.14006 · doi:10.1007/s002229900024
[2] Dan Abramovich, Jan Denef, and Kalle Karu, Weak toroidalization over non-closed fields, Manuscripta Mathematica (2013), DOI:10.1007/s00229-013-0610-5 · Zbl 1279.14020
[3] James Ax and Simon Kochen, Diophantine problems over local fields. I, Amer. J. Math. 87 (1965), 605 – 630. · Zbl 0136.32805 · doi:10.2307/2373065
[4] Paul J. Cohen, Decision procedures for real and \?-adic fields, Comm. Pure Appl. Math. 22 (1969), 131 – 151. · Zbl 0167.01502 · doi:10.1002/cpa.3160220202
[5] Steven Dale Cutkosky, Local monomialization of transcendental extensions, Ann. Inst. Fourier (Grenoble) 55 (2005), no. 5, 1517 – 1586 (English, with English and French summaries). · Zbl 1081.14020
[6] Steven Dale Cutkosky, Toroidalization of dominant morphisms of 3-folds, Mem. Amer. Math. Soc. 190 (2007), no. 890, vi+222. · Zbl 1133.14013 · doi:10.1090/memo/0890
[7] J. Denef, The rationality of the Poincaré series associated to the \?-adic points on a variety, Invent. Math. 77 (1984), no. 1, 1 – 23. · Zbl 0537.12011 · doi:10.1007/BF01389133
[8] Jan Denef, \?-adic semi-algebraic sets and cell decomposition, J. Reine Angew. Math. 369 (1986), 154 – 166. · Zbl 0584.12015 · doi:10.1515/crll.1986.369.154
[9] Jan Denef, Algebraic geometric proof of theorems of Ax-Kochen and Ershov, 2011, http://perswww.kuleuven.be/ũ0009256/Denef-Mathematics
[10] Ju. L. Eršov, On elementary theories of local fields, Algebra i Logika Sem. 4 (1965), no. 2, 5 – 30 (Russian).
[11] Luc Illusie and Michael Temkin, Gabber’s modification theorem (log smooth case), 2012, Exposé 10 in: Travaux de Gabber sur l’uniformisation locale et la cohomologie étale des schémas quasi-excellents (Séminaire à l’ École Polytechnique 2006-2008). Luc Illusie, Yves Laszlo, Fabrice Orgogozo, editors, arXiv:1207.3648. · Zbl 1327.14072
[12] Angus Macintyre, On definable subsets of \?-adic fields, J. Symbolic Logic 41 (1976), no. 3, 605 – 610. · Zbl 0362.02046 · doi:10.2307/2272038
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.