×

Nonlinear stochastic passivity, feedback equivalence and global stabilization. (English) Zbl 1273.93170

Summary: This paper addresses several important issues including stochastic passivity, feedback equivalence and global stabilization for a class of nonlinear stochastic systems. Based on a nonlinear stochastic Kalman-Yacubovitch-Popov (KYP) lemma, we investigate the relationship between a stochastic passive system and the corresponding zero-output system. Different from the deterministic case, it is shown for the first time that feedback equivalence to a stochastic passive system requires a strong minimum-phase condition, not the minimum-phase one. Following the stochastic passivity theory, global stabilization results are established for a class of nonlinear stochastic systems with relative degree \(1\leq r<n\). An example is presented to illustrate the effectiveness of our results.

MSC:

93E15 Stochastic stability in control theory
93C10 Nonlinear systems in control theory
93E03 Stochastic systems in control theory (general)
60H10 Stochastic ordinary differential equations (aspects of stochastic analysis)
Full Text: DOI

References:

[1] Willems, Dissipative dynamic systems part I: general theory, Archive for Rational Mechanics 45 pp 321– (1972) · Zbl 0252.93002 · doi:10.1007/BF00276493
[2] Hill, The stability of nonlinear dissipative systems, IEEE Transactions on Automatic Control 21 pp 708– (1976) · Zbl 0339.93014 · doi:10.1109/TAC.1976.1101352
[3] Hill, Connections between finite gain and asymptotic stability, IEEE Transactions on Automatic Control 25 pp 931– (1980) · Zbl 0453.93029 · doi:10.1109/TAC.1980.1102463
[4] Polushin, Passivity and passification of nonlinear systems, Avtomatika i Telemekhanika 3 pp 3– (2000) · Zbl 1073.93562
[5] Byrnes, Passivity, feedback equivalence, and the global stabilization of minimum phase nonlinear systems, IEEE Transactions on Automatic Control 36 (11) pp 1228– (1991) · Zbl 0758.93007 · doi:10.1109/9.100932
[6] Byrnes, Asymptotic stabilization of minimum phase nonlinear systems, IEEE Transactions on Automatic Control 36 pp 1122– (1991) · Zbl 0758.93060 · doi:10.1109/9.90226
[7] van der Schaft, L2 Gain and Passivity Techniques in Nonlinear Control (2000) · Zbl 0937.93020 · doi:10.1007/978-1-4471-0507-7
[8] Lin, Robust passivity and feedback design for minimum-phase nonlinear systems with structural uncertainty, Automatica 35 pp 35– (1999) · Zbl 0936.93046 · doi:10.1016/S0005-1098(98)00120-4
[9] Yong, Stochastic Control: Hamiltonian Systems and HJB Equations (1999)
[10] Florchinger, A passive system approach to feedback stabilization of nonlinear control stochastic systems, SIAM Journal on Control and Optimization 37 (6) pp 1848– (1999) · Zbl 0942.60052 · doi:10.1137/S0363012997317478
[11] Berman, H-like control for nonlinear stochastic systems, Systems and Control Letters 55 pp 247– (2005) · Zbl 1129.93527 · doi:10.1016/j.sysconle.2005.07.005
[12] Liu, Practical output-feedback risk-sensitive control for stochastic nonlinear systems with stable zero dynamics, SIAM Journal on Control and Optimization 45 pp 885– (2006) · Zbl 1117.93067 · doi:10.1137/S0363012903439185
[13] Pan, Canonical forms for stochastic nonlinear systems, Automatica 38 pp 1163– (2002) · Zbl 1004.93005 · doi:10.1016/S0005-1098(02)00020-1
[14] Daumail L Stabilization of stochastic differential systems via passivity 588 589
[15] Hinrichsen, Stochastic H, SIAM Journal on Control and Optimization 36 pp 1504– (1998) · Zbl 0914.93019 · doi:10.1137/S0363012996301336
[16] Zhang, State feedback H control for a class of nonlinear stochastic systems, SIAM Journal on Control and Optimization 44 pp 1973– (2006) · Zbl 1157.93019 · doi:10.1137/S0363012903423727
[17] Lin, Suboptimal stochastic H2/H design with spectrum constraint, Journal of Control Theory and Applications 6 (3) pp 317– (2008) · doi:10.1007/s11768-008-6167-2
[18] Florchinger P A stochastic version of Artstein’s theorem 1888 1889
[19] Pakshin, Exponential dissipativeness of the random-structure diffusion processes and problems of robust stabilization, Automation and Remote Control 68 (10) pp 1852– (2007) · Zbl 1146.93038 · doi:10.1134/S0005117907100128
[20] Has’minskii, Stochastic Stability of Differential Equation (1980) · doi:10.1007/978-94-009-9121-7
[21] Shen T Xie LH Tamura K Robust almost disturbance decoupling for nonlinear systems with structrual uncertainty 4107 4108
[22] Zhang, Interval stability and stabilization of linear stochastic systems, IEEE Transactions on Automatic Control 54 (4) pp 810– (2009) · Zbl 1367.93577 · doi:10.1109/TAC.2008.2009613
[23] Zhang, Generalized Lyapunov equation approach to state-dependent stochastic stabilization/detectability criterion, IEEE Transactions on Automatic Control 53 (7) pp 1630– (2008) · Zbl 1367.93549 · doi:10.1109/TAC.2008.929368
[24] Jakubczyk, On linearization of control systems, Bulletin de l Academie Polonaise des Sciences-Serie des Sciences Mathematiques 28 pp 517– (1980) · Zbl 0489.93023
[25] Krener, Approximate linearization by state feedback and coordinate change, Systems and Control Letters 5 pp 181– (1984) · Zbl 0555.93027 · doi:10.1016/S0167-6911(84)80100-0
[26] Pan, Output feedback stabilisation for stochastic nonlinear systems in observer canonical form with stable zero dynamics, Science in China (Series F) 44 pp 292– (2001)
[27] Kushner, Lecture Notes in Mathematics, vol. 294, in: Stability of Stochastic Dynamical Systems pp 97– (1972) · doi:10.1007/BFb0064937
[28] Andrievskii, Method of passification in adaptive control, estimation, and synchronization, Avtomatika i Telemekhanika 11 pp 3– (2006) · Zbl 1195.93117
[29] Higham, An algorithmic introduction to numerical simulation of stochastic differential equations, SIAM Review 43 (3) pp 525– (2001) · Zbl 0979.65007 · doi:10.1137/S0036144500378302
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.