×

Periodic orbits and non-integrability in a cosmological scalar field. (English) Zbl 1273.83021

Summary: We apply the averaging theory of first order to study the periodic orbits of Hamiltonian systems describing a universe filled with a scalar field which possesses three parameters. The main results are the following. First, we provide sufficient conditions on the parameters of these cosmological model, which guarantee that at any positive or negative Hamiltonian level, the Hamiltonian system has periodic orbits, the number of such periodic orbits and their stability change with the values of the parameters. These periodic orbits live in the whole phase space in a continuous family of periodic orbits parameterized by the Hamiltonian level. Second, under convenient assumptions we show the non-integrability of these cosmological systems in the sense of Liouville-Arnol’d, proving that there cannot exist any second first integral of class \(\mathcal{C}^1\). It is important to mention that the tools (i.e., the averaging theory for studying the existence of periodic orbits and their kind of stability, and the multipliers of these periodic orbits for studying the integrability of the Hamiltonian system) used here for proving our results on the cosmological scalar field can be applied to Hamiltonian systems with an arbitrary number of degrees of freedom.{
©2012 American Institute of Physics}

MSC:

83C05 Einstein’s equations (general structure, canonical formalism, Cauchy problems)
83C20 Classes of solutions; algebraically special solutions, metrics with symmetries for problems in general relativity and gravitational theory
83C55 Macroscopic interaction of the gravitational field with matter (hydrodynamics, etc.)

References:

[1] DOI: 10.1063/1.524491 · Zbl 0445.35056 · doi:10.1063/1.524491
[2] DOI: 10.1088/0305-4470/36/17/307 · Zbl 1056.70006 · doi:10.1088/0305-4470/36/17/307
[3] Abraham R., Foundations of Mechanics (1978)
[4] DOI: 10.1070/RM2006v061n01ABEH004297 · Zbl 1165.01013 · doi:10.1070/RM2006v061n01ABEH004297
[5] Arnol’d V. I., Encyclopaedia of Mathematical Science, 3. ed. (2006)
[6] DOI: 10.1590/S0103-97332007000300010 · doi:10.1590/S0103-97332007000300010
[7] DOI: 10.1016/j.bulsci.2003.09.002 · Zbl 1055.34086 · doi:10.1016/j.bulsci.2003.09.002
[8] DOI: 10.1088/1751-8113/41/7/075401 · Zbl 1136.83038 · doi:10.1088/1751-8113/41/7/075401
[9] DOI: 10.1016/0167-2789(82)90027-6 · Zbl 1194.37128 · doi:10.1016/0167-2789(82)90027-6
[10] DOI: 10.1063/1.3559145 · Zbl 1315.70010 · doi:10.1063/1.3559145
[11] DOI: 10.1088/1751-8113/44/20/205103 · Zbl 1296.34106 · doi:10.1088/1751-8113/44/20/205103
[12] DOI: 10.1070/RM1983v038n01ABEH003330 · Zbl 0525.70023 · doi:10.1070/RM1983v038n01ABEH003330
[13] DOI: 10.1088/1751-8113/41/46/465101 · Zbl 1152.83428 · doi:10.1088/1751-8113/41/46/465101
[14] Markus L., Mem. Am. Math. Soc. 144 pp 52– (1974)
[15] DOI: 10.1016/0167-2789(94)90148-1 · Zbl 0804.58025 · doi:10.1016/0167-2789(94)90148-1
[16] DOI: 10.1088/0305-4470/27/11/038 · Zbl 0842.70008 · doi:10.1088/0305-4470/27/11/038
[17] DOI: 10.1007/s10569-004-4494-2 · Zbl 1151.70324 · doi:10.1007/s10569-004-4494-2
[18] DOI: 10.1007/978-3-0348-0723-4 · Zbl 1295.37015 · doi:10.1007/978-3-0348-0723-4
[19] Morales-Ruiz J. J., Ann. Sci. Ec. Normale Super. 40 pp 845– (2007) · Zbl 1144.37023 · doi:10.1016/j.ansens.2007.09.002
[20] Poincaré H., Les méthodes nouvelles de la mécanique céleste (1899)
[21] Sanders J. A., Applied Mathematics Sciences, 2. ed. (2007)
[22] Verhulst F., Universitext, in: Nonlinear Differential Equations and Dynamical Systems (1991)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.