×

Constrained large-eddy simulation of separated flow in a channel with streamwise-periodic constrictions. (English) Zbl 1273.76231

Summary: Constrained large-eddy simulation (CLES) method has been recently developed by Chen and his colleagues for simulating attached and detached wall-bounded turbulent flows. In CLES, the whole domain is simulated using large-eddy simulation (LES) while a Reynolds stress constraint is enforced on the subgrid-scale (SGS) stress model for near wall regions. In this paper, CLES is used to simulate the separated flow in a channel with streamwise-periodic constrictions at Re = 10,595. The results of CLES are compared with those of Reynolds-averaged Navier-Stokes (RANS) method, LES, detached eddy simulation (DES) and previous LES results by Breuer et al. and Ziefle et al. Although a coarse grid is used, our results from the present LES, DES and CLES do not show large deviations from the reference results using much finer grid resolution. The comparison also shows that CLES performs the best among different turbulence models tested, demonstrating that the CLES provides an excellent alternative model for separated flows. Furthermore, the cross-comparisons among different CLES implementations have been carried out. Our simulation results are in favor of using the constraint from algebraic RANS model or solving the RANS model equations in the whole domain with a length scale modification according to the idea from DES.

MSC:

76F65 Direct numerical and large eddy simulation of turbulence
Full Text: DOI

References:

[1] DOI: 10.1146/annurev.fluid.34.082901.144919 · doi:10.1146/annurev.fluid.34.082901.144919
[2] DOI: 10.1016/j.paerosci.2008.06.001 · doi:10.1016/j.paerosci.2008.06.001
[3] Spalart P., Advances in DNS/LES: Proceedings of the 1st AFOSR International Conference on DNS/LES pp 137– (1997)
[4] DOI: 10.1146/annurev.fluid.010908.165130 · Zbl 1159.76036 · doi:10.1146/annurev.fluid.010908.165130
[5] DOI: 10.1016/j.paerosci.2008.05.001 · doi:10.1016/j.paerosci.2008.05.001
[6] DOI: 10.1063/1.870414 · Zbl 1184.76393 · doi:10.1063/1.870414
[7] DOI: 10.1007/978-1-4612-1092-4_5 · doi:10.1007/978-1-4612-1092-4_5
[8] DOI: 10.1016/0167-2789(89)90126-7 · Zbl 0687.76049 · doi:10.1016/0167-2789(89)90126-7
[9] Shi Y. P., Phys. Fluids 20 (2008)
[10] DOI: 10.1017/jfm.2012.150 · Zbl 1248.76093 · doi:10.1017/jfm.2012.150
[11] Jiang Z., submitted to Phys. Fluids. (2012)
[12] DOI: 10.1016/j.compfluid.2008.05.002 · Zbl 1237.76026 · doi:10.1016/j.compfluid.2008.05.002
[13] Mellen C. P., Proceedings of the 16th IMACS World Congress (2000)
[14] Jakirlić S., ERCOFTAC Bull. 55 pp 36– (2002)
[15] DOI: 10.1017/S0022112004002812 · Zbl 1065.76116 · doi:10.1017/S0022112004002812
[16] Šarić S., ESAIM Proceedings CEMRACS 2005. Computational aeroacoustics and computational fluid dynamics in turbulent flows pp 133– (2007)
[17] DOI: 10.1016/0894-1777(93)90083-U · doi:10.1016/0894-1777(93)90083-U
[18] Rodi W., University of Karlsruhe, Germany, (1995)
[19] Batten P., in AIAA–2002–0427 (2002)
[20] DOI: 10.1023/A:1024764307706 · Zbl 1079.76565 · doi:10.1023/A:1024764307706
[21] Davidson L., Int. J. Numer. Methods Fluids 43 (2003)
[22] DOI: 10.1016/S0142-727X(02)00222-9 · doi:10.1016/S0142-727X(02)00222-9
[23] DOI: 10.1016/j.ijheatfluidflow.2004.02.009 · doi:10.1016/j.ijheatfluidflow.2004.02.009
[24] Peller N., STAB Jahresbericht 2004, 14. DGLR/STAB Fachsymposium, Bremen, Germany (2004)
[25] DOI: 10.1007/978-1-4020-5152-2_73 · doi:10.1007/978-1-4020-5152-2_73
[26] DOI: 10.1016/j.compfluid.2006.09.001 · Zbl 1194.76079 · doi:10.1016/j.compfluid.2006.09.001
[27] DOI: 10.1007/s00162-007-0067-9 · Zbl 1161.76492 · doi:10.1007/s00162-007-0067-9
[28] DOI: 10.1007/s00162-007-0069-7 · Zbl 1161.76497 · doi:10.1007/s00162-007-0069-7
[29] DOI: 10.1007/s10494-008-9146-2 · Zbl 1257.76038 · doi:10.1007/s10494-008-9146-2
[30] DOI: 10.1016/j.compfluid.2010.04.002 · Zbl 1242.76086 · doi:10.1016/j.compfluid.2010.04.002
[31] DOI: 10.1007/s00162-007-0055-0 · Zbl 1161.76490 · doi:10.1007/s00162-007-0055-0
[32] DOI: 10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2 · doi:10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2
[33] DOI: 10.1063/1.865552 · Zbl 0623.76053 · doi:10.1063/1.865552
[34] Martin M. P., Theoret. Comput. Fluid Dyn. 13 pp 361– (2000)
[35] Squires K. D., Annual Research Brief pp 207– (1991)
[36] DOI: 10.1007/s00162-007-0073-y · Zbl 1161.76493 · doi:10.1007/s00162-007-0073-y
[37] DOI: 10.1002/fld.1959 · Zbl 1170.76020 · doi:10.1002/fld.1959
[38] DOI: 10.1016/S0142-727X(03)00048-1 · doi:10.1016/S0142-727X(03)00048-1
[39] DOI: 10.2514/1.33891 · doi:10.2514/1.33891
[40] DOI: 10.1017/S0022112096007379 · Zbl 0882.76029 · doi:10.1017/S0022112096007379
[41] Jameson A., AIAA Paper pp 81– (1981)
[42] DOI: 10.1016/0021-9991(81)90128-5 · Zbl 0474.65066 · doi:10.1016/0021-9991(81)90128-5
[43] Liou M. S., AIAA Paper pp 95– (1995)
[44] Wada Y., AIAA Paper pp 94– (1994)
[45] Jameson A., AIAA Paper pp 91– (1991)
[46] DOI: 10.2514/3.10007 · doi:10.2514/3.10007
[47] Spalart P., Rech. Aérosp. 1 pp 5– (1994)
[48] DOI: 10.1023/A:1009901401183 · Zbl 0990.76032 · doi:10.1023/A:1009901401183
[49] Manceau R., Proceedings of the 10th ERCOFTAC/IAHR/QNET-CFD Workshop on refined flow modelling, Université de Poitiers, France (2002)
[50] DOI: 10.1080/14685240601047736 · Zbl 1273.76215 · doi:10.1080/14685240601047736
[51] Hunt A. A., Center for Turbulence Research Report CTR-S88, Center for Turbulence Research, Stanford University, Stanford, CA pp 193– (1988)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.