×

Analytical assessment of models for large eddy simulation of particle laden flow. (English) Zbl 1273.76198

Summary: For large eddy simulation of particle-laden flow, the effect of the unresolved scales on the particles needs to be modelled. The present work contains an analysis of three such models, namely approximate deconvolution method (ADM) as proposed by J. G. M. Kuerten [Phys. Fluids 18, No. 2, Article ID 025108 (2006; doi:10.1063/1.2176589)] and two stochastic models proposed by B. Shotorban and F. Mashayek [ibid. 7, Paper No. 18, (2006; doi:10.1080/14685240600595685)] and O. Simonin, E. Deutsch and J. P. Minier [Appl. Sci. Res. 51, No. 1-2, 275–283 (1993; Zbl 0778.76098)]. The purpose of the analysis is twofold. On the one hand, the results serve for model selection in dependence of the application and on the other hand, the analysis shows possibilities for model improvement. The present work contains for each model an analytical computation of averages (first moments) and root-mean square values (second moments) of particle velocity, particle position and fluid velocity seen by the particles. Results indicate that for large Stokes number, ADM yields higher accuracy than the stochastic models analysed, whereas for small Stokes number the stochastic models give higher accuracy. An analytical estimate for the model error is given in dependence of Stokes number and the energy spectrum of the flow. This information can be used for model selection and for reliability prediction. Furthermore, it is shown that both stochastic models contain a deficient convective term, which should be avoided in future model development. The analysis is backed by numerical results from literature.

MSC:

76F65 Direct numerical and large eddy simulation of turbulence
76M25 Other numerical methods (fluid mechanics) (MSC2010)
76M35 Stochastic analysis applied to problems in fluid mechanics
76T15 Dusty-gas two-phase flows

Citations:

Zbl 0778.76098

References:

[1] Sagaut P., Large Eddy Simulation for Incompressible Flows (2006) · Zbl 1091.76001
[2] DOI: 10.1146/annurev.fluid.32.1.1 · doi:10.1146/annurev.fluid.32.1.1
[3] DOI: 10.1017/S0022112001005092 · Zbl 1004.76513 · doi:10.1017/S0022112001005092
[4] DOI: 10.1063/1.870162 · Zbl 1149.76308 · doi:10.1063/1.870162
[5] DOI: 10.1063/1.1824151 · Zbl 1187.76284 · doi:10.1063/1.1824151
[6] DOI: 10.1063/1.2189288 · doi:10.1063/1.2189288
[7] Yang Y., J. Turbul. 9 pp N8– (2008)
[8] DOI: 10.1063/1.2911018 · Zbl 1182.76491 · doi:10.1063/1.2911018
[9] DOI: 10.1007/BF01082549 · Zbl 0778.76098 · doi:10.1007/BF01082549
[10] DOI: 10.1063/1.865723 · Zbl 0631.76051 · doi:10.1063/1.865723
[11] DOI: 10.1063/1.868911 · Zbl 1086.76032 · doi:10.1063/1.868911
[12] DOI: 10.1080/14685240600595685 · Zbl 1273.76219 · doi:10.1080/14685240600595685
[13] DOI: 10.1063/1.2176589 · doi:10.1063/1.2176589
[14] DOI: 10.1080/10407790600859577 · doi:10.1080/10407790600859577
[15] Gobert C., Particle-Laden Flow: From Geophysical to Kolmogorov Scales,, 1. ed. (2007)
[16] DOI: 10.1016/j.ijheatmasstransfer.2007.02.033 · Zbl 1331.76061 · doi:10.1016/j.ijheatmasstransfer.2007.02.033
[17] DOI: 10.1063/1.2709706 · Zbl 1146.76327 · doi:10.1063/1.2709706
[18] DOI: 10.1017/S0022112008003443 · Zbl 1158.76021 · doi:10.1017/S0022112008003443
[19] DOI: 10.1063/1.2001691 · Zbl 1187.76486 · doi:10.1063/1.2001691
[20] Clift R., Bubbles, Drops and Particles (1978)
[21] DOI: 10.1002/pamm.200410237 · Zbl 1354.76065 · doi:10.1002/pamm.200410237
[22] DOI: 10.1063/1.1385390 · Zbl 1184.76034 · doi:10.1063/1.1385390
[23] Gobert C., A priori and a posteriori analysis of models for large-eddy simulation of particle-laden flow (2010) · Zbl 1273.76198
[24] Gobert C., Large Eddy Simulation of Particle-Laden Flow (2010) · Zbl 1427.76095
[25] DOI: 10.1063/1.869867 · Zbl 1147.76506 · doi:10.1063/1.869867
[26] DOI: 10.1016/j.ijheatfluidflow.2004.02.020 · doi:10.1016/j.ijheatfluidflow.2004.02.020
[27] DOI: 10.1063/1.1397277 · Zbl 1184.76531 · doi:10.1063/1.1397277
[28] DOI: 10.1063/1.864125 · Zbl 0526.76063 · doi:10.1063/1.864125
[29] DOI: 10.1023/B:APPL.0000004934.22265.74 · Zbl 1113.76349 · doi:10.1023/B:APPL.0000004934.22265.74
[30] DOI: 10.1063/1.1436496 · Zbl 1185.76723 · doi:10.1063/1.1436496
[31] Pope S. B., Turbulent Flows (2000) · Zbl 0966.76002
[32] DOI: 10.1063/1.2717688 · Zbl 1146.76562 · doi:10.1063/1.2717688
[33] DOI: 10.1063/1.1545472 · Zbl 1186.76176 · doi:10.1063/1.1545472
[34] DOI: 10.1080/14685240701615952 · doi:10.1080/14685240701615952
[35] Fede, P., Simonin, O., Villedieu, P. and Squires, K. D. Stochastic modeling of the subgrid fluid velocity fluctuation seen by inertial particles. Proceedings of the Summer Program. Center for Turbulence Research, Stanford University.
[36] DOI: 10.1063/1.1773844 · Zbl 1187.76388 · doi:10.1063/1.1773844
[37] DOI: 10.1007/s10494-007-9090-6 · Zbl 1258.76098 · doi:10.1007/s10494-007-9090-6
[38] DOI: 10.1063/1.1718972 · Zbl 1186.76378 · doi:10.1063/1.1718972
[39] DOI: 10.1146/annurev.fluid.33.1.289 · doi:10.1146/annurev.fluid.33.1.289
[40] Hinze J. O., Turbulence (1975)
[41] DOI: 10.1175/1520-0469(1993)050<1897:DOHPBT>2.0.CO;2 · doi:10.1175/1520-0469(1993)050<1897:DOHPBT>2.0.CO;2
[42] Issa, R. and Oliveira, P. Assessment of a particle-turbulence interaction model in conjunction with an Eulerian two-phase flow formulation. 2nd International Symposium on Turbulence, Heat and Mass Transfer. Edited by: Hanjalic, K. and Peeters, T. pp.759–770. Delft: Delft University Press.
[43] DOI: 10.1016/j.ijmultiphaseflow.2008.04.002 · doi:10.1016/j.ijmultiphaseflow.2008.04.002
[44] DOI: 10.1007/s00707-008-0066-y · Zbl 1155.76348 · doi:10.1007/s00707-008-0066-y
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.