×

Excess pressure-drop estimation in contraction and expansion flows for constant shear-viscosity, extension strain-hardening fluids. (English) Zbl 1273.76033

Summary: This article addresses the issue of reproducing quantitative pressure-drop predictions for constant shear-viscosity fluids in contraction and contraction/expansion flow geometries. Experimental observations on pressure-drop for severe strain-hardening Boger fluids reveal significant enhancement above Newtonian fluids in axisymmetric but not planar configurations. This discrepancy has eluded predictive capability to date in contraction flows when utilising Oldroyd models. Here, we identify why this is so. The 4:1:4 contraction/expansion flow and adjustment of material parameters provides the key to resolving this dilemma in comparative form to the 4:1 counterpart problem. During the investigation, Oldroyd-B fluid compositions of various solvent:polymeric viscosity ratio splits are employed. A hybrid finite element/volume algorithm of incremental pressure-correction time-stepping structure is utilised, reflecting some novel features with respect to the discrete treatment of pressure.

MSC:

76A10 Viscoelastic fluids

References:

[1] Aboubacar, M.; Matallah, H.; Tamaddon-Jahromi, H. R.; Webster, M. F.: Numerical prediction of extensional flows in contraction geometries: hybrid finite volume element method, J. non-Newton fluid mech. 104, 125-164 (2002) · Zbl 1058.76573 · doi:10.1016/S0377-0257(02)00015-0
[2] Aboubacar, M.; Matallah, H.; Webster, M. F.: Highly elastic solutions for Oldroyd-B and phan-thien/tanner fluids with a finite volume/element method: planar contraction flows, J. non-Newton fluid mech. 103, 65-103 (2002) · Zbl 1143.76492 · doi:10.1016/S0377-0257(01)00164-1
[3] Aboubacar, M.; Phillips, T. N.; Tamaddon-Jahromi, H. R.; Webster, M. F.; Williams, A. J.: Numerical simulation of contraction flows for boger fluids using finite volume methods, Proceedings of the sixth European conference on rheology, 279-280 (2002)
[4] Szabo, P.; Rallison, J. M.; Hinch, E. J.: Start-up of flow of a FENE-fluid through a 4:1:4 constriction in a tube, J. non-Newton fluid mech. 72, 73-86 (1997)
[5] Chilcott, M. D.; Rallison, J. M.: Creeping flow of dilute polymer solutions past cylinders and spheres, J. non-Newton fluid mech. 29, 381-432 (1988) · Zbl 0669.76016 · doi:10.1016/0377-0257(88)85062-6
[6] Cartalos, U.; Piau, J. M.: Creeping flow regimes of low concentration polymer solutions in thick solvents through an orifice die, J. non-Newton fluid mech. 45, 231-285 (1992)
[7] Wapperom, P.; Keunings, R.: Numerical simulation of branched polymer melts in transient complex flow using pom – pom models, J. non-Newton fluid mech. 97, 267-281 (2001) · Zbl 1030.76004 · doi:10.1016/S0377-0257(00)00223-8
[8] Binding, D. M.; Phillips, P. M.; Phillips, T. N.: Contraction/expansion flows: the pressure drop and related issue, J. non-Newton fluid mech. 137, 31-38 (2006) · Zbl 1195.76083 · doi:10.1016/j.jnnfm.2006.03.006
[9] Nigen, S.; Walters, K.: Viscoelastic contraction flows: comparison of axisymmetric and planar configurations, J. non-Newton fluid mech. 102, 343-359 (2002) · Zbl 1082.76501 · doi:10.1016/S0377-0257(01)00186-0
[10] Boger, D. V.: A highly elastic constant-viscosity fluid, J. non-Newton fluid mech. 3, 87-91 (1977)
[11] Rothstein, J. P.; Mckinley, G. H.: The axisymmetric contraction – expansion: the role of extensional rheology on vortex growth dynamics and the enhanced pressure drop, J. non-Newton fluid mech. 98, 33-63 (2001) · Zbl 0963.76521 · doi:10.1016/S0377-0257(01)00094-5
[12] Rothstein, J. P.; Mckinley, G. H.: Extensional flow of a polystyrene boger fluid through a 4:1:4 axisymmetric contraction/expansion, J. non-Newton fluid mech. 86, 61-88 (1999) · Zbl 0947.76505 · doi:10.1016/S0377-0257(98)00202-X
[13] Maia, J. M.; Binding, D.: Influence of elongational properties on the contraction flow of polyisobutylene in a mixed solvent, Rheol. acta 38, 160-171 (1999)
[14] Maia, J. M.: Theoretical modelling of fluid S1: a comparative study of constitutive models in sample and complex flows, J. non-Newton fluid mech. 85, 107-125 (1999) · Zbl 0976.76507 · doi:10.1016/S0377-0257(98)00182-7
[15] Rodd, L. E.; Scott, T. P.; Boger, D. V.; Cooper-White, J. J.; Mckinley, G. H.: The inertio-elastic planar entry flow of low-viscosity elastic fluids in micro-fabricated geometries, J. non-Newton fluid mech. 129, 1-22 (2005)
[16] Perera, M. G. N.; Walters, K.: Long range memory effects in flows involving abrupt changes in geometry. Part 1. Flows associated with L-shaped and T-shaped geometries, J. non-Newton fluid mech. 2, 49-81 (1977) · Zbl 0351.76004 · doi:10.1016/0377-0257(77)80032-3
[17] Perera, M. G. N.; Walters, K.: Long range memory effects in flows involving abrupt changes in geometry. Part 2. The expansion/contraction/expansion problem, J. non-Newton fluid mech. 2, 191-204 (1977) · Zbl 0403.76009 · doi:10.1016/0377-0257(77)80043-8
[18] Keiller, R. A.: Entry-flow calculations for the Oldroyd-B and FENE equations, J. non-Newton fluid mech. 46, 143-178 (1993) · Zbl 0775.76115 · doi:10.1016/0377-0257(93)85045-C
[19] Webster, M. F.; Tamaddon-Jahromi, H. R.; Aboubacar, M.: Transient viscoelastic flows in planar contractions, J. non-Newton fluid mech. 118, 83-101 (2004) · Zbl 1070.76007 · doi:10.1016/j.jnnfm.2004.03.001
[20] Webster, M. F.; Tamaddon-Jahromi, H. R.; Aboubacar, M.: Time-dependent algorithms for viscoelastic flow — finite element/volume schemes, Numer. methods part. Diff. eqns. 121, 272-296 (2005) · Zbl 1141.76433 · doi:10.1002/num.20037
[21] Donea, J.: A Taylor Galerkin method for convective transport problems, Int. J. Numer. methods eng. 20, 101-119 (1984) · Zbl 0524.65071 · doi:10.1002/nme.1620200108
[22] Zienkiewicz, O. C.; Morgan, K.; Peraire, J.; Vandati, M.; Löhner, R.: Finite elements for compressible gas flow and similar systems, (1985) · Zbl 0678.76074
[23] Van Kan, J.: A second-order accurate pressure-correction scheme for viscous incompressible flow, SIAM J. Sci. stat. Comput. 7, 870-891 (1986) · Zbl 0594.76023 · doi:10.1137/0907059
[24] Guermond, J. L.; Quartapelle, L.: On stability and convergence of projection methods based on pressure Poisson equation, Int. J. Numer. methods fluids 26, 1039-1053 (1998) · Zbl 0912.76054 · doi:10.1002/(SICI)1097-0363(19980515)26:9<1039::AID-FLD675>3.0.CO;2-U
[25] P.M. Phillips, The characterisation of some non-Newtonian fluids and experimental measurements and observations in a contraction expansion geometry, Technical report, Department of Mathematics, University of Wales, Aberystwyth, 2005.
[26] Alves, M. A.; Oliveira, P. J.; Pinho, F. T.: Benchmark solutions for the flow of Oldroyd-B and PTT fluids in planar contractions, J. non-Newton fluid mech. 110, 45-75 (2003) · Zbl 1027.76003 · doi:10.1016/S0377-0257(02)00191-X
[27] Binding, D. M.; Blythe, A. R.; Gunter, S.; Mosquera, A. A.; Townsend, P.; Webster, M. F.: Modelling polymer melt flows in wirecoating processes, J. non-Newton fluid mech. 64, 191-206 (1996)
[28] Mompean, G.: On predicting abrupt contraction flows with differential and algebraic viscoelastic models, Comput. fluids 31, 935-956 (2002) · Zbl 1087.76504 · doi:10.1016/S0045-7930(01)00047-0
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.