×

Growth envelopes of Besov spaces on fractal \(h\)-sets. (English) Zbl 1273.46023

Let \(h(t)\) be a continuous increasing function on \([0,1]\) with \(h(0) =0\) and \(h(t) >0\) if \(0<t\leq 1\). A compact set \(\Gamma\) on \(\mathbb R^n\) is called an \(h\)-set if there is a Radon measure \(\mu\) with \(\text{supp\,}\mu =\Gamma\) and \(\mu \big(B(\gamma, r)\big) \sim h(r)\), \(0<r<1\), where \(B(\gamma,r)\) is the ball centered at \(\gamma \in \Gamma\) and of radius \(r\) (the best known examples are \(d\)-sets, where \(h(t) = t^d\), \(0<d<n\)). Let \(B^s_{p,q} (\Gamma)\) be Besov spaces on \(\Gamma\) defined as traces of suitable Besov spaces \(B^\sigma_{p,q} (\mathbb R^n)\) of generalized smoothness \(\sigma\) on \(\Gamma\). The growth envelope function for a spaces \(X\) (on \(\mathbb R^n\) or on \(\Gamma\)) is given by \[ {\mathcal E}^X_G (t) = \sup \big\{ f^* (t): \| \;f \, | X\| \leq 1 \big\}, \qquad 0<t<1. \] The paper studies in detail properties of envelope functions for the spaces \(B^s_{p,q} (\Gamma)\). Theorem 4.6 is the main result.

MSC:

46E35 Sobolev spaces and other spaces of “smooth” functions, embedding theorems, trace theorems
28A80 Fractals
Full Text: DOI

References:

[1] C.Bennett and R.Sharpley, Interpolation of Operators (Academic Press, Boston, 1988). · Zbl 0647.46057
[2] M.Bricchi, Existence and properties of h‐sets, Georgian Math. J. 9(1), 13-32 (2002). · Zbl 1040.28008
[3] M.Bricchi, Tailored Function Spaces and Related h‐sets, PhD thesis, Friedrich‐Schiller‐Universität Jena, Germany (2002). · Zbl 1215.46022
[4] M.Bricchi, Complements and results on h‐sets, in: Function Spaces, Differential Operators and Nonlinear Analysis ‐ The Hans Triebel Anniversary Volume, edited by D. D.Haroske (ed.), Th.Runst (ed.), and H. J.Schmeißer (ed.) (Birkhäuser, Basel, 2003), pp. 219-230. · Zbl 1040.28009
[5] M.Bricchi, Tailored Besov spaces and h‐sets, Math. Nachr. 263-264(1), 36-52 (2004). · Zbl 1044.46027
[6] A. M.Caetano and W.Farkas, Local growth envelopes of Besov spaces of generalized smoothness, Z. Anal. Anwend. 25, 265-298 (2006). · Zbl 1119.46032
[7] A. M.Caetano and A.Gogatishvili, and B.Opic, Embeddings and the growth envelope of Besov spaces involving only slowly varying smoothness, J. Approx. Theory163, 1373-1399 (2011). · Zbl 1238.46024
[8] A. M.Caetano and S. D.Moura, Local growth envelopes of spaces of generalized smoothness: the critical case, Math. Inequal. Appl. 7(4), 573-606 (2004). · Zbl 1076.46025
[9] D. E.Edmunds and H.Triebel, Spectral theory for isotropic fractal drums, C. R. Acad. Sci. Paris326(11), 1269-1274 (1998). · Zbl 0920.47044
[10] W.Farkas and H.‐G.Leopold, Characterisation of function spaces of generalised smoothness, Ann. Mat. Pura Appl. 185(1), 1-62 (2006). · Zbl 1116.46024
[11] D. D.Haroske, Envelopes in function spaces ‐ a first approach, preprint Math/Inf/16/01 (University Jena, Germany, 2001).
[12] D. D.Haroske, Limiting embeddings, entropy numbers and envelopes in function spaces, Habilitationsschrift, Friedrich‐Schiller‐Universität Jena, Germany (2002).
[13] D. D.Haroske, Envelopes and Sharp Embeddings of Function Spaces, Chapman & Hall/CRC Research Notes in Mathematics Vol. 437 (Chapman & Hall/CRC, Boca Raton, FL, 2006). · Zbl 1111.46002
[14] G. A.Kalyabin, Criteria for the multiplicativity of spaces of Besov‐Lizorkin‐ Triebel type and their imbedding into C, Math. Notes30, 750-755 (1982). translation from Mat. Zametki 30, 517-526 (1981). · Zbl 0488.46033
[15] S. D.Moura, Function Spaces of Generalised Smoothness, Entropy Numbers, Applications, PhD thesis, Universidade de Coimbra, Portugal (2002).
[16] H.Triebel, Fractals and Spectra (Birkhäuser, Basel, 1997). · Zbl 0898.46030
[17] H.Triebel, The Structure of Functions (Birkhäuser, Basel, 2001). · Zbl 0984.46021
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.