×

Edge detection from truncated Fourier data using spectral mollifiers. (English) Zbl 1273.42001

Given a smooth function with only jump discontinuities on the interval \((0,1)\) (and possibly on its boundary when extended periodically). The problem is to find the jumps, given its Fourier coefficients \(\hat{f}(k)\), \(|k|\leq N\). The convolution \(f*K_N\) of \(f\) with a concentration kernel \(K_n\) will remove the smooth part and isolate the jumps while Gibbs oscillations are suppressed as much as possible (see e.g.[E. Tadmor, Acta Numerica 16, 305–378 (2007; Zbl 1125.65122)]). The authors propose a concentrated kernel that results in a mollified Fourier sum \[ T_N[\sigma_\lambda](x)=2\pi i\sum_{|k|\leq N}n\widehat{\sigma_\lambda}(n)\hat{f}(n)e^{2\pi i nx} \] where \(\sigma_\lambda(x)=\sigma(\lambda x)\) and \(\sigma\) is a function from a suitable class. For \(\lambda\) going to infinity with \(N\), it is shown that \(T_N[\sigma_\lambda](x)\) will converge to the jumps. Some numerical examples illustrate the robustness and convergence of this edge detection method in the presence of noise and for jumps in close proximity.

MSC:

42A10 Trigonometric approximation
42A50 Conjugate functions, conjugate series, singular integrals
65T40 Numerical methods for trigonometric approximation and interpolation

Citations:

Zbl 1125.65122
Full Text: DOI

References:

[1] Archibald, R; Gelb, A, Reducing the effects of noise in image reconstruction, J. Sci. Comput., 17, 167-180, (2002) · Zbl 1007.94001 · doi:10.1023/A:1015148530452
[2] Canny, J, A computational approach to edge detection, IEEE Trans. Pattern Anal. Mach. Intell., 8, 679-698, (1986) · doi:10.1109/TPAMI.1986.4767851
[3] Engelberg, S; Tadmor, E, Recovery of edges from spectral data with noise—a new perspective, SIAM J. Numer. Anal., 46, 2620-2635, (2008) · Zbl 1192.42002 · doi:10.1137/070689899
[4] Gelb, A; Cates, D, Detection of edges in spectral data III—improvements in the presence of noise, J. Sci. Comput., 36, 1-43, (2008) · Zbl 1203.94009 · doi:10.1007/s10915-007-9170-8
[5] Gelb, A; Tadmor, E, Detection of edges in spectral data, Appl. Comput. Harmon. Anal., 7, 101-135, (1999) · Zbl 0952.42001 · doi:10.1006/acha.1999.0262
[6] Gelb, A; Tadmor, E, Detection of edges in spectral data II, Nonlinear enhancement. SIAM J. Numer. Anal., 38, 1389-1408, (2000) · Zbl 0990.42025 · doi:10.1137/S0036142999359153
[7] Gelb, A; Tadmor, E, Adaptive edge detectors for piecewise smooth dara based on the minmod limiter, J. Sci. Comput., 28, 279-306, (2006) · Zbl 1103.65143 · doi:10.1007/s10915-006-9088-6
[8] Gottlieb, D; Shu, CW, On the Gibbs phenomenon and its resolution, SIAM Rev., 39, 644-668, (1997) · Zbl 0885.42003 · doi:10.1137/S0036144596301390
[9] Hesthaven, J.S., Gottlieb, S., Gottlieb, D.: Spectral Methods for Time-dependent Problems. Cambridge University Press (2007) · Zbl 1111.65093 · doi:10.1017/CBO9780511618352
[10] Shu, C.-W.: Essentially non-oscillatory and weighted essentially non-oscillatory schemes for hyperbolic conservation laws. Advanced Numerical Approximation of Nonlinear Hyperbolic Equations, vol. 1687 of Lecture Notes in Mathematics, pp. 325-432 (1998) · Zbl 0927.65111
[11] Petersen, A., Gelb, A., Eubank, R.: Hypothesis testing for Fourier based edge detection methods. J. Sci. Comput. (2011, accepted) · Zbl 1258.94019
[12] Sobel, I; Freeman, H (ed.), An isotropic 3×3 image gradient operator, (1990), Boston
[13] Stefan, W., Viswanathan, A., Gelb, A., Renaut, R.: Sparsity enforcing edge detection for blurred and noisy Fourier data. (2011, submitted) · Zbl 1244.65252
[14] Stein, E., Weiss, G.: Introduction to Fourier Analysis on Euclidean Spaces. Princeton University Press, Princeton (1971) · Zbl 0232.42007
[15] Tadmor, E, Filters, mollifiers and the computation of the Gibbs phenomenon, Acta Numer., 16, 305-378, (2007) · Zbl 1125.65122 · doi:10.1017/S0962492906320016
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.