×

Turán type inequalities for Tricomi confluent hypergeometric functions. (English) Zbl 1273.33006

In the last half-century, the study of Turán’s inequalities has been of great interest to pure and applied scientists. In particular, showing that some special functions and orthogonal polynomials satisfy this class of inequalities has been an active field of research.
It is pointed out by the authors that Turán’s inequalities related to special functions was successfully used to provide solutions to problems arising in information theory, economic theory and biophysics.
The paper deals with the deduction of sharp Turán inequalities for parabolic cylinder functions and Tricomi confluent hypergeometric functions. Also, monotonicity results concerning Turán determinants are treated.
At first, let the parabolic cylinder function \(U(a,.)\), also denoted \(D_{-a-1/2}\) following Whittaker’s notation, be defined as:
\[ U(a,x)= \frac{1}{2^{\eta} \sqrt{\pi}} \left[\cos(\eta \pi) \Gamma\left(\frac{1}{2} - \eta\right) y_{1}(a,x) - \sqrt{2} \sin(\eta \pi)\Gamma\left(1-\eta\right) y_{2}(a,x) \right], \]
where \(\eta=a/2+1/4\),
\[ y_{1}(a,x)=\exp\left(-\frac{x^2}{4}\right)\Phi\left(\frac{a}{2}+\frac{1}{4},\frac{1}{2},\frac{x^2}{2}\right), \] and
\[ y_{2}(a,x)=x\exp\left(-\frac{x^2}{4}\right)\Phi\left(\frac{a}{2}+\frac{3}{4},\frac{3}{2},\frac{x^2}{2}\right). \]
Further \(\Phi(a,c,.)\) stands for the Kummer confluent hypergeometric function, also known as the confluent hypergeometric function of the first kind.
In order to establish and prove the Turán’s inequalities for the parabolic cylinder functions, both the recurrence relations and differential equation satisfied by \(U(a,.)\) are employed. An integral formula related to the ratio of parabolic cylinder functions is explored in the proof context. Finally, the proof takes advantage of some properties of a modified Bessel function of the second kind \(K_{a}\).
Subsequently, the Turán inequalities for Tricomi’s \(\psi\) function
\[ \psi(a,c,x)=\frac{\Gamma(1-c)}{\Gamma(a-c+1)} \Phi(a,c,x) + \frac{\Gamma(c-1)}{\Gamma(a)} x^{1-c} \Phi(a-c+1,2-c,x) \]
are taken into account. The proof follows from previously defined inequalities and some conversion formulas between Tricomi functions and modified Bessel functions of the second kind. Also, the confluent differential equation and an integral representation for the ratio of Tricomi functions are employed.
The paper also deals with Turán determinants of Tricomi confluent hypergeometric functions. In fact, some complete monotonicity results are given concerning the latter determinants. The proof of these results follows standard approaches of integral and series manipulation.
The results are interesting and the paper is organized and written well. The structure is clear and the mathematical development is rigorous. Finally, the paper is accessible to a wide readership, including early graduate students with basic to medium knowledge on special functions.

MSC:

33C15 Confluent hypergeometric functions, Whittaker functions, \({}_1F_1\)
26D07 Inequalities involving other types of functions

References:

[1] Abramowitz, M., Stegun, I.A. (eds.): Handbook of Mathematical Functions with Formulas, Graphs and Mathematical Tables. Dover Publications, New York (1965) · Zbl 0171.38503
[2] Alexandrov, M.D., Lacis, A.A.: A new three-parameter cloud/aerosol particle size distribution based on the generalized inverse Gaussian density function. Appl. Math. Comput. 116, 153–165 (2000) · Zbl 1026.78008 · doi:10.1016/S0096-3003(99)00201-5
[3] Alzer, H., Felder, G.: A Turán-type inequality for the gamma function. J. Math. Anal. Appl. 350, 276–282 (2009) · Zbl 1198.33001 · doi:10.1016/j.jmaa.2008.09.053
[4] Alzer, H., Gerhold, S., Kauers, M., Lupaş, A.: On Turán’s inequality for Legendre polynomials. Expo. Math. 25, 181–186 (2007) · Zbl 1155.26012 · doi:10.1016/j.exmath.2006.11.001
[5] András, S., Baricz, Á.: Properties of the probability density function of the non-central chi-squared distribution. J. Math. Anal. Appl. 346(2), 395–402 (2008) · Zbl 1145.60010 · doi:10.1016/j.jmaa.2008.05.074
[6] Baricz, Á.: Turán type inequalities for generalized complete elliptic integrals. Math. Z. 256(4), 895–911 (2007) · Zbl 1125.26022 · doi:10.1007/s00209-007-0111-x
[7] Baricz, Á.: Functional inequalities involving Bessel and modified Bessel functions of the first kind. Expo. Math. 26(3), 279–293 (2008) · Zbl 1152.33304 · doi:10.1016/j.exmath.2008.01.001
[8] Baricz, Á.: Mills’ ratio: Monotonicity patterns and functional inequalities. J. Math. Anal. Appl. 340(2), 1362–1370 (2008) · Zbl 1138.60022 · doi:10.1016/j.jmaa.2007.09.063
[9] Baricz, Á.: Turán type inequalities for hypergeometric functions. Proc. Am. Math. Soc. 136(9), 3223–3229 (2008) · Zbl 1154.33001 · doi:10.1090/S0002-9939-08-09353-2
[10] Baricz, Á.: On a product of modified Bessel functions. Proc. Am. Math. Soc. 137(1), 189–193 (2009) · Zbl 1195.33008 · doi:10.1090/S0002-9939-08-09571-3
[11] Baricz, Á.: Turán type inequalities for some probability density functions. Studia Sci. Math. Hung. 47(2), 175–189 (2010) · Zbl 1234.62010
[12] Baricz, Á.: Turán type inequalities for modified Bessel functions. Bull. Aust. Math. Soc. 82(2), 254–264 (2010) · Zbl 1206.33007 · doi:10.1017/S000497271000002X
[13] Baricz, Á., Jankov, D., Pogány, T.K.: Turán type inequalities for Krätzel functions. J. Math. Anal. Appl. 388(2), 716–724 (2012) · Zbl 1235.33003 · doi:10.1016/j.jmaa.2011.09.057
[14] Baricz, Á., Ponnusamy, S.: On Turán type inequalities for modified Bessel functions. Proc. Am. Math. Soc. (in press) · Zbl 1272.33005
[15] Barnard, R.W., Gordy, M.B., Richards, K.C.: A note on Turán type and mean inequalities for the Kummer function. J. Math. Anal. Appl. 349(1), 259–263 (2009) · Zbl 1162.33001 · doi:10.1016/j.jmaa.2008.08.024
[16] Berg, C., Szwarc, R.: Bounds on Turán determinants. J. Approx. Theory 1(161), 127–141 (2009) · Zbl 1190.33012 · doi:10.1016/j.jat.2008.08.010
[17] Erdélyi, A., Magnus, W., Oberhettinger, F., Tricomi, F.G.: Higher Transcendental Functions, vol. 1. McGraw-Hill, New York (1953) · Zbl 0052.29502
[18] Erdélyi, A., Magnus, W., Oberhettinger, F., Tricomi, F.G.: Higher Transcendental Functions, vol. 2. McGraw-Hill, New York (1953) · Zbl 0052.29502
[19] Gordon, R.D.: Values of Mills’ ratio of area bounding ordinate and of the normal probability integral for large values of the argument. Ann. Math. Stat. 12, 364–366 (1941) · JFM 67.0467.03 · doi:10.1214/aoms/1177731721
[20] Ismail, M.E.H.: Classical and Quantum Orthogonal Polynomials in One Variable. Encyclopedia of Mathematics and Its Applications. Cambridge University Press, Cambridge (2005)
[21] Ismail, M.E.H.: Determinants with orthogonal polynomial entries. J. Comput. Appl. Anal. 178, 255–266 (2005) · Zbl 1083.15011
[22] Ismail, M.E.H., Kelker, D.H.: Special functions, Stieltjes transforms and infinite divisibility. SIAM J. Math. Anal. 10(5), 884–901 (1979) · Zbl 0427.60021 · doi:10.1137/0510083
[23] Ismail, M.E.H., Laforgia, A.: Monotonicity properties of determinants of special functions. Constr. Approx. 26, 1–9 (2007) · Zbl 1117.33004 · doi:10.1007/s00365-005-0627-4
[24] Ismail, M.E.H., Muldoon, M.E.: Monotonicity of the zeros of a cross-product of Bessel functions. SIAM J. Math. Anal. 9(4), 759–767 (1978) · Zbl 0388.33005 · doi:10.1137/0509055
[25] Johnson, N.L., Kotz, S., Balakrishnan, N.: Continuous Univariate Distributions, vol. 2, 2nd edn. Wiley-Interscience, New York (1995) · Zbl 0821.62001
[26] Karlin, S., Szego, G.: On certain determinants whose elements are orthogonal polynomials. J. Anal. Math. 8, 1–157 (1960/61), reprinted in R. Askey, ed., ”Gábor Szego Collected Papers”, vol. 3, Birkhäuser, Boston, 1982, pp. 605–761
[27] Karp, D.: Turán inequalities for the Kummer function in a shift of both parameters. Zap. Nauč. Semin. POMI 383, 110–125 (2010) (Russian); translation in J. Math. Sci. 178(2), 178–186 (2011)
[28] Karp, D., Sitnik, S.M.: Log-convexity and log-concavity of hypergeometric-like functions. J. Math. Anal. Appl. 364, 384–394 (2010) · Zbl 1226.33003 · doi:10.1016/j.jmaa.2009.10.057
[29] Laforgia, A.: Bounds for modified Bessel functions. J. Comput. Appl. Math. 34, 263–267 (1991) · Zbl 0726.33003 · doi:10.1016/0377-0427(91)90087-Z
[30] Laforgia, A., Natalini, P.: On some Turán-type inequalities. J. Inequal. Appl. 2006, 29828 (2006) · Zbl 1095.33002
[31] Lakshmana Rao, S.K.: Turán’s inequality for the general Laguerre and Hermite polynomials. Math. Stud. 26, 1–6 (1958) · Zbl 0097.05603
[32] Madhava Rao, B.S., Thiruvenkatachar, V.R.: On an inequality concerning orthogonal polynomials. Proc. Indian Acad. Sci., Sect. A 29, 391–393 (1949) · Zbl 0032.27501
[33] McEliece, R.J., Reznick, B., Shearer, J.B.: A Turán inequality arising in information theory. SIAM J. Math. Anal. 12(6), 931–934 (1981) · Zbl 0482.33005 · doi:10.1137/0512078
[34] Segura, J.: Bounds for ratios of modified Bessel functions and associated Turán-type inequalities. J. Math. Anal. Appl. 374(2), 516–528 (2011) · Zbl 1207.33009 · doi:10.1016/j.jmaa.2010.09.030
[35] Segura, J.: On bounds for solutions of monotonic first order difference-differential systems. J. Inequal. Appl. (2012). doi: 10.1186/1029-242X-2012-65 · Zbl 1278.34037
[36] Sun, Y., Baricz, Á.: Inequalities for the generalized Marcum Q-function. Appl. Math. Comput. 203, 134–141 (2008) · Zbl 1169.33301 · doi:10.1016/j.amc.2008.04.009
[37] Szego, G.: On an inequality of P. Turán concerning Legendre polynomials. Bull. Am. Math. Soc. 54, 401–405 (1948) · Zbl 0032.27502 · doi:10.1090/S0002-9904-1948-09017-6
[38] Szego, G.: Orthogonal Polynomials, 4th edn. Amer. Math. Soc., Providence (1975)
[39] Turán, P.: On the zeros of the polynomials of Legendre. Časopis Pest. Mat. Fys. 75, 113–122 (1950) · Zbl 0040.32303
[40] van Haeringen, H.: Bound states for r -like potentials in one and three dimensions. J. Math. Phys. 19, 2171–2179 (1978) · doi:10.1063/1.523574
[41] Watson, G.N.: A Treatise on the Theory of Bessel Functions, 2nd edn. Cambridge University Press, Cambridge (1944) · Zbl 0063.08184
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.