×

Virtual Compton scattering off a spinless target in AdS/QCD. (English) Zbl 1272.81184

Summary: We study the doubly virtual Compton scattering off a spinless target \(\gamma^*P \rightarrow \gamma^*P'\) within the Anti-de Sitter(AdS)/QCD formalism. We find that the general structure allowed by the Lorentz invariance and gauge invariance of the Compton amplitude is not easily reproduced with the standard recipes of the AdS/QCD correspondence. In the soft-photon regime, where the semi-classical approximation is supposed to apply best, we show that the measurements of the electric and magnetic polarizabilities of a target like the charged pion in real Compton scattering, can already serve as stringent tests.

MSC:

81U05 \(2\)-body potential quantum scattering theory
81V10 Electromagnetic interaction; quantum electrodynamics
81V05 Strong interaction, including quantum chromodynamics
81T20 Quantum field theory on curved space or space-time backgrounds

References:

[1] J.M. Maldacena, The large-N limit of superconformal field theories and supergravity, Adv. Theor. Math. Phys.2 (1998) 231 [Int. J. Theor. Phys.38 (1999) 1113] [hep-th/9711200] [SPIRES]. · Zbl 0914.53047
[2] E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys.2 (1998) 253 [hep-th/9802150] [SPIRES]. · Zbl 0914.53048
[3] S.S. Gubser, I.R. Klebanov and A.M. Polyakov, Gauge theory correlators from non-critical string theory, Phys. Lett.B 428 (1998) 105 [hep-th/9802109] [SPIRES]. · Zbl 1355.81126
[4] J. Polchinski and M.J. Strassler, Hard scattering and gauge/string duality, Phys. Rev. Lett.88 (2002) 031601 [hep-th/0109174] [SPIRES]. · doi:10.1103/PhysRevLett.88.031601
[5] O.J. Rosten, A Manifestly Gauge Invariant and Universal Calculus for SU(N) Yang-Mills, Int. J. Mod. Phys.A 21 (2006) 4627 [hep-th/0602229] [SPIRES]. · Zbl 1113.81098
[6] H. Boschi-Filho and N.R.F. Braga, Gauge/string duality and scalar glueball mass ratios, JHEP05 (2003) 009 [hep-th/0212207] [SPIRES]. · doi:10.1088/1126-6708/2003/05/009
[7] G.F. de Teramond and S.J. Brodsky, The hadronic spectrum of a holographic dual of QCD, Phys. Rev. Lett.94 (2005) 201601 [hep-th/0501022] [SPIRES]. · doi:10.1103/PhysRevLett.94.201601
[8] T. Hambye, B. Hassanain, J. March-Russell and M. Schvellinger, Four-point functions and kaon decays in a minimal AdS/QCD model, Phys. Rev.D 76 (2007) 125017 [hep-ph/0612010] [SPIRES].
[9] P. Colangelo, F. De Fazio, F. Giannuzzi, F. Jugeau and S. Nicotri, Light scalar mesons in the soft-wall model of AdS/QCD, Phys. Rev.D 78 (2008) 055009 [arXiv:0807.1054] [SPIRES].
[10] J. Erlich, How Well Does AdS/QCD Describe QCD?, Int. J. Mod. Phys.A 25 (2010) 411 [arXiv:0908.0312] [SPIRES]. · Zbl 1184.81125
[11] J. Polchinski and M.J. Strassler, Deep inelastic scattering and gauge/string duality, JHEP05 (2003) 012 [hep-th/0209211] [SPIRES]. · doi:10.1088/1126-6708/2003/05/012
[12] Y. Hatta, E. Iancu and A.H. Mueller, Deep inelastic scattering at strong coupling from gauge/string duality: the saturation line, JHEP01 (2008) 026 [arXiv:0710.2148] [SPIRES]. · doi:10.1088/1126-6708/2008/01/026
[13] C.A. Ballon Bayona, H. Boschi-Filho and N.R.F. Braga, Deep inelastic scattering from gauge string duality in the soft wall model, JHEP03 (2008) 064 [arXiv:0711.0221] [SPIRES]. · doi:10.1088/1126-6708/2008/03/064
[14] C.A. Ballon Bayona, H. Boschi-Filho and N.R.F. Braga, Deep inelastic structure functions from supergravity at small x, JHEP10 (2008) 088 [arXiv:0712.3530] [SPIRES]. · doi:10.1088/1126-6708/2008/10/088
[15] L. Cornalba and M.S. Costa, Saturation in Deep Inelastic Scattering from AdS/CFT, Phys. Rev.D 78 (2008) 096010 [arXiv:0804.1562] [SPIRES].
[16] Y. Hatta and T. Matsuo, Thermal hadron spectrum in e+e−annihilation from gauge/string duality, Phys. Rev. Lett.102 (2009) 062001 [arXiv:0807.0098] [SPIRES]. · doi:10.1103/PhysRevLett.102.062001
[17] Y. Hatta and T. Matsuo, Thermal hadron spectrum in e+e−annihilation from gauge/string duality, Phys. Rev. Lett.102 (2009) 062001 [arXiv:0807.0098] [SPIRES]. · doi:10.1103/PhysRevLett.102.062001
[18] C.A. Ballon Bayona, H. Boschi-Filho and N.R.F. Braga, Deep inelastic scattering from gauge string duality in D3-D7 brane model, JHEP09 (2008) 114 [arXiv:0807.1917] [SPIRES]. · Zbl 1245.81139 · doi:10.1088/1126-6708/2008/09/114
[19] J.-H. Gao and B.-W. Xiao, Polarized Deep Inelastic and Elastic Scattering From Gauge/String Duality, Phys. Rev.D 80 (2009) 015025 [arXiv:0904.2870] [SPIRES].
[20] Y. Hatta, T. Ueda and B.-W. Xiao, Polarized DIS in N = 4 SYM: Where is spin at strong coupling?, JHEP08 (2009) 007 [arXiv:0905.2493] [SPIRES]. · doi:10.1088/1126-6708/2009/08/007
[21] E. Levin and I. Potashnikova, Soft interaction at high energy and N = 4 SYM, JHEP06 (2009) 031 [arXiv:0902.3122] [SPIRES]. · doi:10.1088/1126-6708/2009/06/031
[22] L. Cornalba, M.S. Costa and J. Penedones, AdS black disk model for small-x DIS, arXiv:1001.1157 [SPIRES].
[23] Y.V. Kovchegov, Z. Lu and A.H. Rezaeian, Comparing AdS/CFT Calculations to HERA F2Data, Phys. Rev.D 80 (2009) 074023 [arXiv:0906.4197] [SPIRES].
[24] B. Pire, C. Roiesnel, L. Szymanowski and S. Wallon, On AdS/QCD correspondence and the partonic picture of deep inelastic scattering, Phys. Lett.B 670 (2008) 84 [arXiv:0805.4346] [SPIRES].
[25] H.R. Grigoryan and A.V. Radyushkin, Form Factors and Wave Functions of Vector Mesons in Holographic QCD, Phys. Lett.B 650 (2007) 421 [hep-ph/0703069] [SPIRES].
[26] H.R. Grigoryan and A.V. Radyushkin, Structure of Vector Mesons in Holographic Model with Linear Confinement, Phys. Rev.D 76 (2007) 095007 [arXiv:0706.1543] [SPIRES].
[27] S.J. Brodsky and G.F. de Teramond, Light-Front Dynamics and AdS/QCD Correspondence: The Pion Form Factor in the Space- and Time-Like Regions, Phys. Rev.D 77 (2008) 056007 [arXiv:0707.3859] [SPIRES].
[28] H.J. Kwee and R.F. Lebed, Pion Form Factor in Improved Holographic QCD Backgrounds, Phys. Rev.D 77 (2008) 115007 [arXiv:0712.1811] [SPIRES].
[29] Z. Abidin and C.E. Carlson, Gravitational Form Factors of Vector Mesons in an AdS/QCD Model, Phys. Rev.D 77 (2008) 095007 [arXiv:0801.3839] [SPIRES].
[30] D. Rodriguez-Gomez and J. Ward, Electromagnetic form factors from the fifth dimension, JHEP09 (2008) 103 [arXiv:0803.3475] [SPIRES]. · Zbl 1245.81105 · doi:10.1088/1126-6708/2008/09/103
[31] F.E. Low, Scattering of light of very low frequency by systems of spin 1/2, Phys. Rev.96 (1954) 1428 [SPIRES]. · Zbl 0056.44408 · doi:10.1103/PhysRev.96.1428
[32] M. Gell-Mann and M.L. Goldberger, Scattering of low-energy photons by particles of spin 1/2, Phys. Rev.96 (1954) 1433 [SPIRES]. · Zbl 0056.44407 · doi:10.1103/PhysRev.96.1433
[33] J. Portoles and M.R. Pennington, Theoretical predictions for pion polarizabilities, hep-ph/9407295 [SPIRES].
[34] J. Ahrens et al., Measurement of the π+meson polarizabilities via the gamma p → gamma π+n reaction, Eur. Phys. J.A 23 (2005) 113 [nucl-ex/0407011] [SPIRES].
[35] COMPASS collaboration, A. Guskov, Pion polarizabilities measurement at COMPASS, FizikaB 17 (2008) 313 [SPIRES].
[36] J.-H. Gao and B.-W. Xiao, Non-forward Compton scattering in AdS/CFT, Phys. Rev.D 81 (2010) 035008 [arXiv:0912.4333] [SPIRES].
[37] A.V. Belitsky, D. Mueller, A. Kirchner and A. Schafer, Twist-three analysis of photon electroproduction off pion, Phys. Rev.D 64 (2001) 116002 [hep-ph/0011314] [SPIRES].
[38] V.A. Petrunkin, Scattering of Low-energy photons on a zero-spin particle, Nucl. Phys.55 (1964) 197. · doi:10.1016/0029-5582(64)90139-7
[39] J.F. Donoghue and B.R. Holstein, Pion transitions and models of chiral symmetry, Phys. Rev.D 40 (1989) 2378 [SPIRES].
[40] T. Sakai and S. Sugimoto, Low energy hadron physics in holographic QCD, Prog. Theor. Phys.113 (2005) 843 [hep-th/0412141] [SPIRES]. · Zbl 1076.81623 · doi:10.1143/PTP.113.843
[41] J. Erlich, E. Katz, D.T. Son and M.A. Stephanov, QCD and a Holographic Model of Hadrons, Phys. Rev. Lett.95 (2005) 261602 [hep-ph/0501128] [SPIRES]. · doi:10.1103/PhysRevLett.95.261602
[42] L. Da Rold and A. Pomarol, Chiral symmetry breaking from five dimensional spaces, Nucl. Phys.B 721 (2005) 79 [hep-ph/0501218] [SPIRES]. · Zbl 1128.81310
[43] J. Hirn and V. Sanz, Interpolating between low and high energy QCD via a 5D Yang-Mills model, JHEP12 (2005) 030 [hep-ph/0507049] [SPIRES]. · doi:10.1088/1126-6708/2005/12/030
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.