×

Determination and analysis of the effective relaxation properties of a composite with viscoelastic components. (English. Ukrainian original) Zbl 1272.74537

Int. Appl. Mech. 46, No. 1, 18-27 (2010); translation from Prik. Mekh., Kiev 46, No. 1, 22-33 (2010).
Summary: The relaxation properties of a two-component material are determined depending on time, volume fraction, and type of reinforcement, and the relationship among them. The type of reinforcement is determined by the aspect ratio of the ellipsoid of revolution that models the inclusion. The effective moduli of the composite are determined from the relaxation properties of the components. It is assumed that the composite components are made of isotropic viscoelastic materials with volume expansion and shear characteristics described by two Rabotnov’s fractional-exponential functions with different orders of fractionality. To obtain the solution in the time domain, its fractional rational representation in the frequency domain is used. Optimizing the parameters of this representation and transforming the parameters of the solution to the time domain make it possible to obtain solutions in compact form in terms of relaxation kernels.

MSC:

74Q15 Effective constitutive equations in solid mechanics
74E30 Composite and mixture properties
74D05 Linear constitutive equations for materials with memory
Full Text: DOI

References:

[1] G. A. Vanin, Micromechanics of Composite Materials [in Russian], Naukova Dumka, Kyiv (1985). · Zbl 0602.73055
[2] V. T. Glushko, N. N. Dolinina, and M. I. Rozovskii, Stability of Mine Workings (Mathematical Description) [in Russian], Naukova Dumka, Kyiv (1973).
[3] A. V. Gorelik, ”Fracture of a material bonded by discrete fibers,” Int. Appl. Mech., 15, No. 6, 473–477 (1979).
[4] A. A. Kaminsky, Fracture of Viscoelastic Bodies with Cracks [in Russian], Naukova Dumka, Kyiv (1990).
[5] A. A. Kaminsky, ”Study of the deformation of anisotropic viscoelastic bodies,” Int. Appl. Mech., 36, No. 11, 1434–1457 (2000). · Zbl 1130.74360 · doi:10.1023/A:1011352414424
[6] M. A. Koltunov, Creep and Relaxation [in Russian], Vysshaya Shkola, Moscow (1976).
[7] R. M. Christensen, Mechanics of Composite Materials, John Wiley and Sons, New York (1979). · Zbl 0393.46049
[8] A. N. Guz, L. P. Khoroshun, A. A. Kaminsky, et. al., Mechanics of Materials, Vol. 1 of the three-volume series Mechanics of Composite Materials and Structural Members [in Russian], Naukova Dumka, Kyiv (1982).
[9] B. E. Pobedrya, Mechanics of Composite Materials [in Russian], Izd. Mosk. Univ., Moscow (1984). · Zbl 0555.73069
[10] V. N. Poturaev, V. I. Dyrda, and I. I. Krush, Applied Mechanics of Rubber [in Russian], Naukova Dumka, Kyiv (1980).
[11] Yu. N. Rabotnov, Elements of the Heriditary Mechanics of Solids [in Russian], Nauka, Moscow (1977).
[12] A. M. Skudra, F. Ya. Bulavs, and K. A. Rozens, Creep and Static Fatigue of Reinforced Plastics [in Russian], Zinatne, Riga (1971).
[13] A. M. Skudra and F. Ya. Bulavs, Strength of Reinforced Plastics [in Russian], Khimiya, Moscow (1982).
[14] L. P. Khoroshun, ”Prediction of thermoelastic properties of materials strengthened by unidirectional discrete fibers,” Int. Appl. Mech., 10, No. 12, 1288–1293 (1974).
[15] L. P. Khoroshun, B. P. Maslov, E. N. Shikula, and L. V. Nazarenko, Statistical Mechanics and Effective Properties of Materials [in Russian], Naukova Dumka, Kyiv (1993).
[16] T. D. Shermergor, Elasticity Theory of Microinhomogeneous Bodies [in Russian], Nauka, Moscow (1977).
[17] L. C. Brinson and W. S. Lin, ”Comparison of micromechanical methods for effective properties of multiphase viscoelastic composites,” Compos. Struct., 41, 353–367 (1998). · doi:10.1016/S0263-8223(98)00019-1
[18] G. V. Gavrilov, ”Study into the kinetics of a crack with a nonsmall fracture process zone in an aging viscoelastic plate,” Int. Appl. Mech., 43, No. 8, 903–911 (2007). · doi:10.1007/s10778-007-0091-x
[19] L. V. Gibiansky, G. W. Milton, and J. G. Berryman, ”On the effective viscoelastic moduli of two-phase media. III. Rigorous bounds on the complex shear modulus in two dimensions,” Proc. R. Soc. Lond. A, 455, 2117–2149 (1999). · Zbl 0946.74049 · doi:10.1098/rspa.1999.0395
[20] R. Corenflo, J. Loutchko, and Y. Luchko, ”Computation of the Mittag–Leffler function E {\(\alpha\)},{\(\beta\)} (z) and its derivative,” Fract. Calc. Appl. Anal., 5, No. 4, 491–518 (2002). · Zbl 1027.33016
[21] W. B. Jones and W. J. Thron, Continued Fractions, Addison Wesley, Massachusetts (1980). · Zbl 0445.30003
[22] A. A. Kaminsky and G. V. Gavrilov, ”Subcritical stable growth of a penny-shaped crack in an aging viscoelastic orthotropic material with cylindrical anisotropy,” Int. Appl. Mech., 43, No. 1, 68–78 (2007). · Zbl 1150.74020 · doi:10.1007/s10778-007-0008-8
[23] A. A. Kaminsky and V. F. Selivanov, ”A method for determining the viscoelastic characteristics of composites,” Int. Appl. Mech., 41, No. 5, 469–480 (2005). · Zbl 1089.74508 · doi:10.1007/s10778-005-0112-6
[24] A. A. Kaminsky and M. F. Selivanov,” Growth of a penny-shaped crack with a nonsmall fracture process zone in a composite,” Int. Appl. Mech., 44, No. 8, 866–871 (2008). · Zbl 1177.74046 · doi:10.1007/s10778-008-0100-8
[25] A. A. Kaminsky and M. F. Selivanov, ”On the application of branched operator continued fractions for a boundary problem of linear viscoelasticity,” Int. Appl. Mech., 42, No. 1, 115–126 (2006). · Zbl 1114.74341 · doi:10.1007/s10778-006-0066-3
[26] J. Li and G. J. Weng, ”Anisotropic stress-strain relations and complex moduli of a viscoelastic composite with aligned inclusions,” Comp. Eng., 4, 1073–1097 (1994). · doi:10.1016/0961-9526(95)91284-N
[27] J. Li and G. J. Weng, ”Strain-rate sensitivity, relaxation behavior, and complex moduli of a class of isotropic viscoelastic composites,” ASME, J. Eng. Mater. Technol., 116, 495–504 (1994). · doi:10.1115/1.2904319
[28] M. F. Selivanov and Y. A. Chernoivan, ”A combined approach of the Laplace transform and Pade approximation solving viscoelasticity problems,” Int. J. Solids Struct., 44, 66–76 (2007). · Zbl 1118.74055 · doi:10.1016/j.ijsolstr.2006.04.012
[29] M. F. Selivanov, ”Effective properties of a linear viscoelastic composite,” Int. Appl. Mech., 45, No. 10, 1084–1091 (2009). · Zbl 1267.74098 · doi:10.1007/s10778-010-0249-9
[30] J. Stoer, ”A direct method for Chebyshev approximation by rational functions,” J. ACM, 11, No. 1, 59–69 (1964). · Zbl 0133.09002 · doi:10.1145/321203.321211
[31] N. W. Tschoegl, W. G. Knauss, and I. Emri, ”Poisson’s ratio in linear viscoelasticity: A critical review,” Mech. Time-Dependent Mat., 6, 3–51 (2002). · doi:10.1023/A:1014411503170
[32] P. P. Valko and J. Abate, ”Numerical Laplace inversion in rheological characterization,” J. Non-Newtonian Fluid Mech., 116, 395–406 (2004). · Zbl 1106.76429 · doi:10.1016/j.jnnfm.2003.11.001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.