×

Analysis of the rate-dependent coupled thermo-mechanical response of shape memory alloy bars and wires in tension. (English) Zbl 1272.74385

Summary: In this paper, the coupled thermo-mechanical response of shape memory alloy (SMA) bars and wires in tension is studied. By using the Gibbs free energy as the thermodynamic potential and choosing appropriate internal state variables, a three-dimensional phenomenological macroscopic constitutive model for polycrystalline SMAs is derived. Taking into account the effect of generated (absorbed) latent heat during the forward (inverse) martensitic phase transformation, the local form of the first law of thermodynamics is used to obtain the energy balance relation. The three-dimensional coupled relations for the energy balance in the presence of the internal heat flux and the constitutive equations are reduced to a one-dimensional problem. An explicit finite difference scheme is used to discretize the governing initial-boundary-value problem of bars and wires with circular cross-sections in tension. Considering several case studies for SMA wires and bars with different diameters, the effect of loading–unloading rate and different boundary conditions imposed by free and forced convections at the surface are studied. It is shown that the accuracy of assuming adiabatic or isothermal conditions in the tensile response of SMA bars strongly depends on the size and the ambient condition in addition to the rate dependency that has been known in the literature. The data of three experimental tests are used for validating the numerical results of the present formulation in predicting the stress-strain and temperature distribution for SMA bars and wires subjected to axial loading-unloading.

MSC:

74K10 Rods (beams, columns, shafts, arches, rings, etc.)
74M05 Control, switches and devices (“smart materials”) in solid mechanics
Full Text: DOI

References:

[1] Airoldi G., Riva G., Rivolta B., Vanelli M.: DSC calibration in the study of shape memory alloys. J. Therm. Anal. 42(4), 781–791 (1994) · doi:10.1007/BF02546750
[2] Arpaci V.S.: Conduction Heat Transfer. Addison-Wesley, Reading (1966) · Zbl 0144.46703
[3] Auricchio F., Fugazza D., Desroches R.: Rate-dependent thermo-mechanical modelling of superelastic shape-memory alloys for seismic applications. J. Intell. Mater. Syst. Struct. 19, 47–61 (2008) · doi:10.1177/1045389X06073426
[4] Bernardini D., Vestroni F.: Non-isothermal oscillations of pseudoelastic devices. Int. J. Non-Linear Mech. 38, 1297–1313 (2003) · Zbl 1348.74077 · doi:10.1016/S0020-7462(02)00065-3
[5] Birman V.: Review of mechanics of shape memory alloy structures. Appl. Mech. Rev. 50(11), 629–645 (1997) · doi:10.1115/1.3101674
[6] Boyd J.G., Lagoudas D.C.: A thermodynamic constitutive model for the shape memory alloy materials. Part I. The monolithic shape memory alloy. Int. J. Plast. 12, 805–842 (1996) · Zbl 0898.73020 · doi:10.1016/S0749-6419(96)00030-7
[7] Cebeci, T.: Laminar free convective heat transfer from the outer surface of a vertical slender circular cylinder. In: Proceedings 5th International Heat Transfer Conference, vol. 3, pp. 15–19. PaperNC1.4, Tokyo (1974)
[8] Chang B.C., Shaw J.A., Iadicola M.A.: Thermodynamics of shape memory alloy wire: modeling, experiments, and application. Contin. Mech. Thermodyn. 18, 83–118 (2006) · Zbl 1149.74381 · doi:10.1007/s00161-006-0022-9
[9] Chen Y.C., Lagoudas D.C.: Impact induced phase transformation in shape memory alloys. J. Mech. Phys. Solids 48(2), 275–300 (2000) · Zbl 1005.74048 · doi:10.1016/S0022-5096(99)00044-7
[10] DesRoches R., Delemont M.: Seismic retrofit of simply supported bridges using shape memory alloys. Eng. Struct. 24(3), 325–332 (2002) · doi:10.1016/S0141-0296(01)00098-0
[11] DesRoches R., McCormick J., Delemont M.: Cyclic properties of superelastic shape memory alloy wires and bars. J. Struct. Eng. 130(1), 38–46 (2004) · doi:10.1061/(ASCE)0733-9445(2004)130:1(38)
[12] DesRoches R., Taftali B., Ellingwood B.R.: Seismic performance assessment of steel frames with shape memory alloy connections. Part I analysis and seismic demands. J. Earthq. Eng. 14(4), 471–486 (2010) · doi:10.1080/13632460903301088
[13] Fand R.M.: Heat transfer by forced convection from a cylinder to water in crossflow. Int. J. Heat Mass Transf. 8(7), 995–1010 (1965) · doi:10.1016/0017-9310(65)90084-0
[14] Forsythe G.E., Malcolm M.A., Moler C.B.: Computer Methods for Mathematical Computations. Prentice-Hall, Upper Saddle River (1976) · Zbl 0361.65002
[15] Gall K., Sehitoglu H., Chumlyakov Y.I., Kireeva I.V.: Tension-compression asymmetry of the stress–strain response in aged single crystal and polycrystalline NiTi. Acta Mater. 47, 1203–1217 (1999) · doi:10.1016/S1359-6454(98)00432-7
[16] Goo B.C., Lexcellent C.: Micromechanics-based modeling of two-way shape memory effect of a single crystalline shape memory alloy. Acta Metall. et Mater. 45(2), 727–737 (1997) · doi:10.1016/S1359-6454(96)00172-3
[17] Gao X., Huang M., Brinson L.C.: A multivariant micromechanical model for SMAs. Part 1: crystallographic issues for single crystal model. Int. J. Plast. 16(10–11), 1345–1369 (2000) · Zbl 0986.74053 · doi:10.1016/S0749-6419(00)00013-9
[18] He X.M., Rong L.J.: DSC analysis of reverse martensitic transformation in deformed Ti-Ni-Nb shape memory alloy. Scr. Mater. 51(1), 7–11 (2004) · doi:10.1016/j.scriptamat.2004.03.027
[19] Hilpert R.: Wärmeabgabe yon geheizten drähten und rohern im lufstrom. Forsch. Geb. Ingenieurw. 4, 215–224 (1933) · doi:10.1007/BF02719754
[20] Holman J.P.: Heat Transfer. McGraw-Hill, New York (1990)
[21] Iadicola M.A., Shaw J.A.: Rate and thermal sensitivities of unstable transformation behavior in a shape memory alloy. Int. J. Plast. 20, 577–605 (2004) · Zbl 1134.74345 · doi:10.1016/S0749-6419(03)00040-8
[22] Knudsen J.G., Katz D.L.: Fluid Dynamics and Heat Transfer. McGraw-Hill, New York (1958) · Zbl 0085.19602
[23] Lagoudas D.C., Bo Z., Qidwai M.A.: A unifed thermodynamic constitutive model for SMA and finite element analysis of active metal matrix composite. Mech. Compos. Mater. Struct. 3, 153–179 (1996) · doi:10.1080/10759419608945861
[24] Lagoudas D.C., Ravi-Chandar K., Sarh K., Popov P.: Dynamic loading of polycrystalline shape memory alloy rods. Mech. Mater. 35, 689–716 (2003) · doi:10.1016/S0167-6636(02)00199-0
[25] Lagoudas D.C., Entchev P.B.: Modeling of transformation-induced plasticity and its effect on the behavior of porous shape memory alloys. Part I: constitutive model for fully dense SMAs. Mech. Mater. 36(9), 865–892 (2004) · doi:10.1016/j.mechmat.2003.08.006
[26] Lagoudas D.C., Entchev P.B., Popov P., Patoor E., Brinson L.C., Gao X.: Shape memory alloys, Part II: modeling of polycrystals. Mech. Mater. 38, 430–462 (2006) · doi:10.1016/j.mechmat.2005.08.003
[27] Lagoudas, D.C. (ed.): Shape Memory Alloys: Modeling and Engineering Applications. Springer, New York (2008) · Zbl 1225.74005
[28] Liang C., Rogers C.A.: The multi-dimensional constitutive relations of shape memory alloys. J. Eng. Math. 26, 429–443 (1992) · Zbl 0765.73004 · doi:10.1007/BF00042744
[29] Liu N., Huang W.M.: DSC study on temperature memory effect of NiTi shape memory alloy. Trans. Nonferrous Metals Soc. China 16, s37–s41 (2006) · doi:10.1016/S1003-6326(06)60138-6
[30] McCormick J., Tyber J., DesRoches R., Gall K., Maier H.J.: Structural engineering with NiTi. II: mechanical behavior and scaling. J. Eng. Mech. 133(9), 1019–1029 (2007) · doi:10.1061/(ASCE)0733-9399(2007)133:9(1019)
[31] Messner C., Werner E.A.: Temperature distribution due to localised martensitic transformation in SMA tensile test specimens. Comput. Mater. Sci. 26, 95–101 (2003) · doi:10.1016/S0927-0256(02)00408-1
[32] Mirzaeifar R., Shakeri M., Sadighi M.: Nonlinear finite element formulation for analyzing shape memory alloy cylindrical panels. Smart Mater. Struct. 18(3), 035002 (2009) · doi:10.1088/0964-1726/18/3/035002
[33] Mirzaeifar R., DesRoches R., Yavari A.: Exact solutions for pure torsion of shape memory alloy circular bars. Mech. Mater. 42(8), 797–806 (2010) · doi:10.1016/j.mechmat.2010.06.003
[34] Mirzaeifar, R., Shakeri, M., DesRoches, R., Yavari, A.: A semi-analytic analysis of shape memory alloy thick-walled cylinders under internal pressure. Arch. Appl. Mech. (2010). doi: 10.1007/s00419-010-0468-x · Zbl 1271.74369
[35] Mirzaeifar R., DesRoches R., Yavari A.: A combined analytical, numerical, and experimental study of shape-memory-alloy helical springs. Int. J. Solids Struct. 48(3–4), 611–624 (2011) · Zbl 1236.74206 · doi:10.1016/j.ijsolstr.2010.10.026
[36] Özişik M.N.: Finite Difference Methods in Heat Transfer. CRC-Press, Boca Raton (1994)
[37] Padgett J.E, DesRoches R., Ehlinger R.: Experimental response modification of a four-span bridge retrofit with shape memory alloys. Struct. Control Health Monit. 17(6), 694–708 (2010)
[38] Paradis A., Terriault P., Brailovski V.: Modeling of residual strain accumulation of NiTi shape memory alloys under uniaxial cyclic loading. Comput. Mater. Sci. 47, 373–383 (2009) · doi:10.1016/j.commatsci.2009.08.013
[39] Patoor E., Lagoudas D.C., Entchev P.B., Brinson L.C., Gao X.: Shape memory alloys, Part I: general properties and modeling of single crystals. Mech. Mater. 38, 391–429 (2006) · doi:10.1016/j.mechmat.2005.05.027
[40] Popiel C.O.: Free convection heat transfer from vertical slender cylinders: a review. Heat Transf. Eng. 29(6), 521–536 (2008) · doi:10.1080/01457630801891557
[41] Qidwai M.A., Lagoudas D.C.: On thermomechanics and transformation surfaces of polycrystalline NiTi shape memory alloy material. Int. J. Plast. 16, 1309–1343 (2000) · Zbl 1032.74043 · doi:10.1016/S0749-6419(00)00012-7
[42] Qidwai M.A., Lagoudas D.C.: Numerical implementation of a shape memory alloy thermomechanical constitutive model using return mapping algorithms. Int. J. Numer. Methods Eng. 47, 1123–1168 (2000) · Zbl 0960.74067 · doi:10.1002/(SICI)1097-0207(20000228)47:6<1123::AID-NME817>3.0.CO;2-N
[43] Rajagopal K.R., Srinivasa A.R.: Mechanics of the inelastic behavior of materials. part I: theoretical underpinnings. Int. J. Plast. 14(10–11), 945–967 (1998) · Zbl 0978.74013 · doi:10.1016/S0749-6419(98)00037-0
[44] Saint-Sulpice L., Chirani S.A., Calloch S.: A 3D super-elastic model for shape memory alloys taking into account progressive strain under cyclic loadings. Mech. Mater. 41, 12–26 (2009) · doi:10.1016/j.mechmat.2008.07.004
[45] Simo J.C., Hughes T.J.R.: Computational inelasticity, vol. 7 of interdisciplinary applied mathematics. Springer, New York (1998) · Zbl 0934.74003
[46] Tanaka K.: A thermomechanical sketch of shape memory effect: one-dimensional tensile behaviour. Res Mech. 18, 251–263 (1986)
[47] Tanaka K., Kobayashi S., Sato Y.: Thermomechanics of transformation pseudoelasticity and shape memory effect in alloys. Int. J. Plast. 2, 59–72 (1986) · doi:10.1016/0749-6419(86)90016-1
[48] Tanaka K., Nishimura F., Hayashi T., Tobushi H., Lexcellent C.: Phenomenological analysis on subloops and cyclic behavior in shape memory alloys under mechanical and/or thermal loads. Mech. Mater. 19, 281–292 (1995) · doi:10.1016/0167-6636(94)00038-I
[49] Tyber J., McCormick J., Gall K., DesRoches R., Maier H., Maksoud A.E.A.: Structural engineering with NiTi. I: basic materials characterization. J. Eng. Mech. 133(9), 1009–1018 (2007) · doi:10.1061/(ASCE)0733-9399(2007)133:9(1009)
[50] Vitiello A., Giorleo G., Morace R.E.: Analysis of thermomechanical behaviour of Nitinol wires with high strain rates. Smart Mater. Struct. 14, 215–221 (2005) · doi:10.1088/0964-1726/14/1/021
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.