×

Multivariate time series analysis. (English) Zbl 1272.62061

Dahlhaus, Rainer (ed.) et al., Mathematical methods in signal processing and digital image analysis. Berlin: Springer (ISBN 978-3-540-75631-6/hbk). Springer Complexity, 1-40 (2008).
Summary: Nowadays, modern measurement devices are capable to deliver signals with increasing data rates and higher spatial resolutions. When analyzing these data, particular interest is focused on disentangling the network structure underlying the recorded signals. Neither univariate nor bivariate analysis techniques are expected to describe the interactions between the processes sufficiently well. Moreover, the direction of the direct interactions is particularly important to understand the underlying network structure sufficiently well. Here, we present multivariate approaches to time series analysis being able to distinguish direct and indirect, in some cases the directions of interactions in linear as well as nonlinear systems.
For the entire collection see [Zbl 1130.68006].

MSC:

62M10 Time series, auto-correlation, regression, etc. in statistics (GARCH)
37M10 Time series analysis of dynamical systems
62P10 Applications of statistics to biology and medical sciences; meta analysis
Full Text: DOI

References:

[1] Allefeld, C.; Kurths, J., An approach to multivariate phase synchronization analysis and its application to event-related potentials, Int. J. Bif. Chaos, 14, 417-426 (2004) · Zbl 1099.37517 · doi:10.1142/S0218127404009521
[2] Baccala, L. A.; Sameshima, K., Partial directed coherence: a new concept in neural structure determination, Biol. Cybern., 84, 463-474 (2001) · Zbl 1160.92306 · doi:10.1007/PL00007990
[3] Bandrivskyy, A.; Bernjak, A.; McClintock, P. V. E.; Stefanovska, A., Wavelet phase coherence analysis: application to skin temperature and blood flow, Cardiovasc. Eng., 4, 89-93 (2004) · doi:10.1023/B:CARE.0000025126.63253.43
[4] Bennett, M.; Schatz, M. F.; Rockwood, H.; Wiesenfeld, K., Huygens’s clocks, Proc. R. Soc. Lond. A, 458, 563-579 (2002) · Zbl 1026.01007 · doi:10.1098/rspa.2001.0888
[5] Bloomfield, P., Fourier Analysis of Time Series: An Introduction (1976), New York: Wiley, New York · Zbl 0353.62051
[6] Boccaletti, S.; Kurths, J.; Osipov, G.; Valladares, D. L.; Zhou, C. S., The synchronization of chaotic systems, Phys. Rep., 366, 1-101 (2002) · Zbl 0995.37022 · doi:10.1016/S0370-1573(02)00137-0
[7] Boccaletti, S.; Valladares, D. L., Characterization of intermittent lag synchronization, Phys. Rev. E, 62, 7497-7500 (2000) · doi:10.1103/PhysRevE.62.7497
[8] Brillinger, D. R., Time Series: Data Analysis and Theory (1981), San Francisco: Holden-Day, Inc., San Francisco · Zbl 0486.62095
[9] Brillinger, D. R., Remarks concerning graphical models for time series and point processes, Rev. Econometrica, 16, 1-23 (1996)
[10] Dahlhaus, R., Graphical interaction models for multivariate time series, Metnka, 51, 157-172 (2000) · Zbl 1093.62571
[11] Dahlhaus, R.; Eichler, M.; Green, P.; Hjort, N.; Richardson, S., Causality and graphical models for time series, Highly Structured Stochastic Systems (2003), Oxford: Oxford University Press, Oxford
[12] Dahlhaus, R.; Eichler, M.; Sandkühler, J., Identification of synaptic connections in neural ensembles by graphical models, J. Neurosci. Methods, 77, 93-107 (1997) · doi:10.1016/S0165-0270(97)00100-3
[13] Eichler, M., A graphical approach for evaluating effective connectivity in neural systems, Phil. Trans. Royal Soc. B, 360, 953-967 (2005) · doi:10.1098/rstb.2005.1641
[14] Eichler, M., Granger-causality and path diagrams for multivariate time series, J. Econorn., 137, 334-353 (2007) · Zbl 1360.62455
[15] Eichler, M.; Schelter, B.; Winterhaider, M.; Timmer, J., Graphical modeling of dynamic relationships in multivariate time series, Handbook of Time Series Analysis (2006), New York: Wiley, New York · Zbl 1268.62112
[16] Eichler, M.; Dahlhaus, R.; Sandkühler, J., Partial correlation analysis for the identification of synaptic connections, Biol. Cybern., 89, 289-302 (2003) · Zbl 1105.92311 · doi:10.1007/s00422-003-0400-3
[17] Granger, J., Investigating causal relations by econometric models and cross-spectral methods, Econometrica 37, 37, 424-438 (1969) · Zbl 1366.91115 · doi:10.2307/1912791
[18] Grosse, P.; Cassidy, M. J.; Brown, P., EEG-EMG, MEG-EMG and EMG-EMG frequency analysis: physiological principals and clinical applications, Clin. Neurophysiol., 113, 1523-1531 (2002) · doi:10.1016/S1388-2457(02)00223-7
[19] Harvey, A. C., Forecasting Structural Time Series Models and the Kaiman Filter (1994), Cambridge: Cambridge University Press, Cambridge
[20] Hellwig, B.; Häußler, S.; Lauk, M.; Köster, B.; Guschlbauer, B.; Kristeva-Feige, R.; Timmer, J.; Lücking, C. H., Tremor-correlated cortical activity detected by electroencephalography, Electroencephalogr. Clin. Neurophysiol., 111, 806-809 (2000)
[21] Hellwig, B.; Häußler, S.; Schelter, B.; Lauk, M.; Guschlbauer, B.; Timmer, J.; Lücking, C. H., Tremor correlated cortical activity in essential tremor, Lancet, 357, 519-523 (2001) · doi:10.1016/S0140-6736(00)04044-7
[22] Hellwig, B.; Schelter, B.; Guschlbauer, B.; Timmer, J.; Lücking, C. H., Dynamic synchronisation of central oscillators in essential tremor, Clin. Neurophysiol., 114, 1462-1467 (2003) · doi:10.1016/S1388-2457(03)00116-0
[23] D. Hemmelmann, W. Hesse, L. Leistritz, T. Wüstenberg, J. Reichenbach, and H. Witte. Example of a 4-dimensional image analysis: Time-variant model-related analysis of fast-fmri sequences. In The 9th Korea-Germany Joint Workshop on Advanced Medical Images Processing, pages 22-28, Seoul, 2006.
[24] Hesse, W.; Möller, E.; Arnold, M.; Schack, B., The use of time-variant EEG Granger causality for inspecting directed interdependencies of neural assemblies, J. Neurosci. Methods, 124, 27-44 (2003) · doi:10.1016/S0165-0270(02)00366-7
[25] Hobson, J. A.; Pace-Schott, E. F., The cognitive neuroscience of sleep: neuronal systems, consciousness and learning, Nat. Rev. Neurosci., 3, 679-693 (2002) · doi:10.1038/nrn915
[26] Johnson, N. L.; Kotz, S.; Balakrishnan, N., Continuous Univariate Distributions (1995), New York: Wiley, New York · Zbl 0821.62001
[27] Jones, E. G., Thalamic circuitry and thalamocortical synchrony, Philos. Trans. R. Soc. Lond. B. Biol. Sci., 357, 1659-1673 (2002) · doi:10.1098/rstb.2002.1168
[28] Kamihski, M. J.; Blinowska, K. J., A new method of the description of the information flow in the brain structures, Biol. Cybern., 65, 203-210 (1991) · Zbl 0734.92003 · doi:10.1007/BF00198091
[29] Kent, J.; Hainsworth, T., Confidence intervals for the noncentral chisquared distribution, J. Stat. Plan. Infer., 46, 147-159 (1995) · Zbl 0832.62025 · doi:10.1016/0378-3758(94)00104-4
[30] Kocarev, L.; Parlitz, U., Generalized synchronization, predictability, and equivalence of unidirectionally coupled dynamical systems, Phys. Rev. Lett., 76, 1816-1819 (1996) · doi:10.1103/PhysRevLett.76.1816
[31] Kus, R.; Kamiński, M.; Blinowska, K. J., Determination of EEG activity propagation: pair-wise versus multichannel estimate, IEEE Trans. Biomed. Eng., 51, 1501-1510 (2004) · doi:10.1109/TBME.2004.827929
[32] Leistritz, L.; Hesse, W.; Arnold, M.; Witte, H., Development of interaction measures based on adaptive non-linear time series analysis of biomedical signals, Biomed. Tech., 51, 2, 64-69 (2006) · doi:10.1515/BMT.2006.012
[33] Leistritz, L.; Hesse, W.; Wüstenberg, T.; Fitzek, C.; Reichenbach, J. R.; Witte, H., Time-variant analysis of fast-fmri and dynamic contrast agent mri sequences as examples of 4-dimensional image analysis, Meth. Inf. Med., 45, 6, 643-650 (2006)
[34] Mardia, K.; Jupp, P., Directional Statistics (2000), West Sussex: Wiley, West Sussex · Zbl 0935.62065
[35] Möller, E.; Schack, B.; Arnold, M.; Witte, H., Instantaneous multivariate EEG coherence analysis by means of adaptive high-dimensional autoregressive models, J. Neurosci. Methods, 105, 143-158 (2001) · doi:10.1016/S0165-0270(00)00350-2
[36] Mormann, F.; Lehnertz, K.; David, P.; Elger, C. E., Mean phase coherence as a measure for phase synchronization and its application to the EEG of epilepsy patients, Physica D, 144, 358-369 (2000) · Zbl 0962.92020 · doi:10.1016/S0167-2789(00)00087-7
[37] Niedermeyer, E.; Sherman, D. L.; Geocadin, R. J.; Hansen, H. C.; Hanley, D. F., The burst-suppression electroencephalogram, Clin. Electroencephalogr., 30, 99-105 (1999)
[38] Osipov, G. V.; Pikovsky, A. S.; Rosenblum, M. G.; Kurths, J., Phase synchronization effects in a lattice of nonidentical Roessler oscillators, Phys. Rev. E, 55, 2353-2361 (1997) · doi:10.1103/PhysRevE.55.2353
[39] Osipov, G. V.; Kurths, J.; Zhou, C., Synchronization in Oscillatory Networks (2007), Berlin: Complexity. Springer, Berlin · Zbl 1137.37018
[40] Pace-Schott, E. F.; Hobson, J. A., The neurobiology of sleep: genetics, cellular physiology and subcortical networks, Nat. Rev. Neurosci., 3, 591-605 (2002)
[41] Pecora, L. M.; Carroll, T. L., Synchronization in chaotic systems, Phys. Rev. Lett., 64, 821-824 (1990) · Zbl 0938.37019 · doi:10.1103/PhysRevLett.64.821
[42] Pikovsky, A.; Rosenblum, M.; Kurths, J., Phase synchronization in regular and chaotic systems, Int. J. Bif. Chaos, 10, 2291-2305 (2000) · Zbl 1090.37508
[43] Pikovsky, A.; Rosenblum, M.; Kurths, J., Synchronization—A Universal Concept in Nonlinear Sciences (2001), Cambridge: Cambridge University Press, Cambridge · Zbl 0993.37002
[44] Quyen, M. L. V.; Foucher, J.; Lachaux, J.; Rodriguez, E.; Lutz, A.; Martinerie, J.; Varela, F. J., Comparison of Hilbert transform and wavelet methods for the analysis of neuronal synchrony, J. Neurosci. Methods, 111, 83-98 (2001) · doi:10.1016/S0165-0270(01)00372-7
[45] M. G. Rosenblum, A. Pikovsky, J. Kurths, C. Schäfer, and P. A. Tass. Phase synchronization: from theory to data analysis. In F. Moss and S. Gielen, editors, Handbook of Biological Physics, volume 4 of Neuroinformatics, pages 279-321, Elsevier, Amsterdam, 2001.
[46] Rosenblum, M. G.; Pikovsky, A. S.; Kurths, J., Phase synchronization of chaotic oscillators, Phys. Rev. Lett., 76, 1804-1807 (1996) · doi:10.1103/PhysRevLett.76.1804
[47] Rosenblum, M. G.; Pikovsky, A. S.; Kurths, J., From phase to lag synchronization in coupled chaotic oscillators, Phys. Rev. Lett., 78, 4193-4196 (1997) · doi:10.1103/PhysRevLett.78.4193
[48] Rulkov, N. F.; Sushchik, M. M.; Tsimring, L. S.; Abarbanel, H. D. I., Generalized synchronization of chaos in directionally coupled chaotic systems, Phys. Rev. E, 51, 980-994 (1995) · doi:10.1103/PhysRevE.51.980
[49] Sameshima, K.; Baccala, L. A., Using partial directed coherence to describe neuronal ensemble interactions, J. Neurosci. Methods, 94, 93-103 (1999) · doi:10.1016/S0165-0270(99)00128-4
[50] Schack, B.; Grießbach, G.; Arnold, M.; Bolten, J., Dynamic cross spectral analysis of biological signals by means of bivariate ARMA processes with time-dependent coefficients, Med. Biol. Eng. Comput., 33, 605-610 (1995) · doi:10.1007/BF02522521
[51] Schack, B.; Rappelsberger, P.; Weiss, S.; Möller, E., Adaptive phase estimation and its application in EEG analysis of word processing, J. Neurosci. Methods, 93, 49-59 (1999) · doi:10.1016/S0165-0270(99)00117-X
[52] Schack, B.; Weiss, S.; Rappelsberger, P., Cerebral information transfer during word processing: where and when does it occur and how fast is it?, Hum. Brain Mapp., 19, 18-36 (2003) · doi:10.1002/hbm.10104
[53] Schelter, B.; Hellwig, B.; Guschlbauer, B.; Lücking, C. H.; Timmer, J., Application of graphical models in bilateral essential tremor, Proc. IFMBE (EMBEC), 2, 1442-1443 (2002)
[54] B. Schelter, J. Timmer, and M. Eichler. Assessing the strength of directed influences among neural signals using renormalized partial directed coherence, submitted 2007.
[55] Schelter, B.; Winterhaider, M.; Dahlhaus, R.; Kurths, J.; Timmer, J., Partial phase synchronization for multivariate synchronizing system, Phys. Rev. Lett., 96, 208103 (2006) · doi:10.1103/PhysRevLett.96.208103
[56] Schelter, B.; Winterhaider, M.; Eichler, M.; Peifer, M.; Hellwig, B.; Guschlbauer, B.; Lücking, C. H.; Dahlhaus, R.; Timmer, J., Testing for directed influences among neural signals using partial directed coherence, J. Neurosci. Methods, 152, 210-219 (2006) · doi:10.1016/j.jneumeth.2005.09.001
[57] Schelter, B.; Winterhaider, M.; Hellwig, B.; Guschlbauer, B.; Lücking, C. H.; Timmer, J., Direct or indirect? Graphical models for neural oscillators, J. Physiol. Paris, 99, 37-46 (2006) · doi:10.1016/j.jphysparis.2005.06.006
[58] B. Schelter, M. Winterhaider, J. Kurths, and J. Timmer. Phase synchronization and coherence analysis: sensitivity and specificity. Int. J. Bif. Chaos, in press, 2006. · Zbl 1160.37351
[59] Schelter, B.; Winterhaider, M.; Timmer, J., Handbook of Time Series Analysis (2006), Berlin: Wiley-VCH, Berlin · Zbl 1104.62328
[60] Schiff, S. J.; So, P.; Chang, T.; Burke, R. E.; Sauer, T., Detecting dynamical interdependence and generalized synchrony through mutual prediction in a neural ensemble, Phys. Rev. E, 54, 6708-6724 (1996) · doi:10.1103/PhysRevE.54.6708
[61] Schnider, S. M.; Kwong, R. H.; Lenz, F. A.; Kwan, H. C., Detection of feedback in the central nervous system using system identification techniques, Biol. Cybern., 60, 203-212 (1989) · Zbl 0667.92004 · doi:10.1007/BF00207288
[62] Shumway, R. H.; Stoffer, D. S., Time Series Analysis and Its Application (2000), New York: Springer, New York · Zbl 0942.62098
[63] Steriade, M., Impact of network activities on neuronal properties in corticothalamic systems, J. Neurophysiol., 86, 1-39 (2001)
[64] Steriade, M.; Timofeev, I., Neuronal plasticity in thalamocortical networks during sleep and waking oscillations, Neuron, 37, 563-576 (2003) · doi:10.1016/S0896-6273(03)00065-5
[65] Tass, P. A.; Rosenblum, M. G.; Weule, J.; Kurths, J.; Pikovsky, A.; Volkmann, J.; Schnitzler, A.; Freund, H. J., Detection of n: m phase locking from noisy data: Application to magnetoencephalography, Phys. Rev. Lett., 81, 3291-3295 (1998) · doi:10.1103/PhysRevLett.81.3291
[66] Lauk, J. T. M.; Häußler, S.; Radt, V.; Köster, B.; Hellwig, B.; Guschlbauer, B.; Lücking, C. H.; Eichler, M.; Deuschl, G., Cross-spectral analysis of tremor time series, Int. J. Bif. Chaos, 10, 2595-2610 (2000) · Zbl 0967.92010
[67] Timmer, J.; Lauk, M.; Pfleger, W.; Deuschl, G., Cross-spectral analysis of physiological tremor and muscle activity. I. Theory and application to unsynchronized EMG, Biol. Cybern., 78, 349-357 (1998) · Zbl 0908.92016 · doi:10.1007/s004220050439
[68] Volkmann, J.; Joliot, M.; Mogilner, A.; Ioannides, A. A.; Lado, F.; Fazzini, E.; Ribary, U.; Llinás, R., Central motor loop oscillations in Parkinsonian resting tremor revealed by magnetoencephalography, Neurology, 46, 1359-1370 (1996)
[69] Voss, H.; Timmer, J.; Kurths, J., Nonlinear dynamical system indentification from uncertain and indirect measurements, Int. J. Bif. Chaos, 14, 1905-1933 (2004) · Zbl 1129.93545 · doi:10.1142/S0218127404010345
[70] Winterhaider, M.; Schelter, B.; Hesse, W.; Schwab, K.; Leistritz, L.; Klan, D.; Bauer, R.; Timmer, J.; Witte, H., Comparison of linear signal processing techniques to infer directed interactions in multivariate neural systems, Sig. Proc., 85, 2137-2160 (2005) · Zbl 1160.94369 · doi:10.1016/j.sigpro.2005.07.011
[71] Winterhaider, M.; Schelter, B.; Hesse, W.; Schwab, K.; Leistritz, L.; Klan, D.; Timmer, J.; Witte, H., Detection of directed information flow in multidimensional biosignals, Special Issue on Biosignal Processing, Biomed. Tech., 51, 281-287 (2006)
[72] Winterhaider, M.; Schelter, B.; Kurths, J.; Schulze-Bonhage, A.; Timmer, J., Sensitivity and specificity of coherence and phase synchronization analysis, Phys. Lett. A, 356, 26-34 (2006) · Zbl 1160.37351 · doi:10.1016/j.physleta.2006.03.018
[73] Witte, H.; Schelenz, C.; Specht, M.; Jäger, H.; Putsche, P.; Arnold, M.; Leistritz, L.; Reinhart, K., Interrelations between EEG frequency components in sedated intensive care patients during burst-suppression period, Neurosci. Lett., 260, 53-56 (1999) · doi:10.1016/S0304-3940(98)00944-6
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.