×

A handy formula for the Fredholm index of Toeplitz plus Hankel operators. (English) Zbl 1272.47041

For \(1<p<\infty\), let \(l^p(\mathbb{Z})\) denote the Banach space of all sequences \(x=\{x_n\}_{n\in\mathbb{Z}}\) of complex numbers with the norm \(\|x\|_p=\big(\sum_{n\in\mathbb{Z}}|x_n|^p\big)^{1/p} <\infty\), \(P\) be the canonical projection of \(l^p(\mathbb{Z})\) onto its subspace \(l^p:=l^p(\mathbb{Z}_+)\) of sequences with \(x_n=0\) for \(n<0\), \(Q=I-P\), and let \(J\) act on \(l^p(\mathbb{Z})\) by \((Jx)_n=x_{-n-1}\).
For each function \(a\in L^\infty(\mathbb{T})\), let \(\{a_k\}_{k\in \mathbb{Z}}\) denote the sequence of its Fourier coefficients. The Laurent operator \(L(a)\) associated with \(a\in L^\infty(\mathbb{T})\) acts on the space of all finitely supported sequences on \(\mathbb{Z}\) by \((L(a)x)_k=\sum_{m\in\mathbb{Z}}a_{k-m}x_m\). Let \(M^p\) be the Banach algebra of all \(a\in L^\infty(\mathbb{T})\) for which \(L(a)\) extends to a bounded linear operator on \(l^p(\mathbb{Z})\), and let \(PC_p\) be the Banach subalgebra of \(M^p\) generated by the piecewise constant functions on \(\mathbb{T}\).
Let \(L(X)\) denote the Banach algebra of all bounded linear operators on a Banach space \(X\), and let \(K(X)\) be the ideal of all compact operators in \(L(X)\).
Given \(a\in M^p\), the operators \(T(a):=PL(a)P\) and \(H(a):=PL(a)QJ\) acting on \(l^p\) are called the Toeplitz and Hankel operators with generating function \(a\), respectively. Let \(\text{TH}(PC_p)\) be the Banach subalgebra of \(L(l^p)\) generated by all operators of the form \(T(a)+H(b)\) with \(a,b\in PC_p\).
For \(p\in(1,\infty)\) and \(\lambda\in\overline{\mathbb{R}}\), let \(\mu_p(\lambda):=(1+\coth(\pi\lambda+\pi i/p))/2\) and \(\nu_p(\lambda) :=(2i\sinh(\pi\lambda+\pi i/p))^{-1}\). Put \(\mathbb{T}_+:=\{z\in \mathbb{T}:\text{Im}\,z\geq 0\}\), \(\mathbb{T}_+^0:=\mathbb{T}_+ \setminus\{\pm 1\}\). For \(a\in PC_p\), let \(a(t^+)\) and \(a(t^-)\) denote the right and the left one-sided limits at a point \(t\in\mathbb{T}\).
The Fredholm symbol calculus for the Banach algebra \(\text{TH}(PC_p)\) and the Fredholm criterion for any operator \(A\in\text{TH}(PC_p)\) are given by the following theorem:
(a) Let \(p\in(1,\infty)\), \(a,b\in PC_p\) and \(1/p+1/q=1\). Then the operator \(T(a)+H(b)\) is Fredholm on the space \(l^p\) if and only if the matrix \[ \begin{aligned} &\text{smb}_p(T(a)+H(b))(t,\lambda)\\ &\quad:=\begin{pmatrix} a(t^+)\mu_q(\lambda)+a(t^-)(1-\mu_q(\lambda)) & (b(t^+)-b(t^-))\nu_q(\lambda)\\(b(\bar{t}^-)-b(\bar{t}^+)) \nu_q(\lambda) & a(\bar{t}^-)(1-\mu_q(\lambda))+a(\bar{t}^+) \mu_q(\lambda)\end{pmatrix} \end{aligned} \] is invertible for every \((t,\lambda)\in\mathbb{T}^0_+\times \overline{\mathbb{R}}\) and if the number \[ \begin{aligned} \text{smb}_p(T(a)+H(b))(t,\lambda)&:=a(t^+)\mu_q(\lambda)+a(t^-) (1-\mu_q(\lambda))\\ &\quad+it(b(t^+)-b(t^-))\nu_q(\lambda) \end{aligned} \] is not zero for every \((t,\lambda)\in\{\pm 1\}\times \overline{\mathbb{R}}\).
(b) The mapping \(\text{smb}_p\) defined in assertion (a) extends to a continuous algebra homomorphism from \(\text{TH}(PC_p)\) to the algebra \(\mathcal{F}\) of all bounded functions on \(\mathbb{T}_+ \times\overline{\mathbb{R}}\) with values in \(\mathbb{C}^{2\times 2}\) on \(\mathbb{T}^0_+\times\overline{\mathbb{R}}\) and with values in \(\mathbb{C}\) on \(\{\pm 1\}\times\overline{\mathbb{R}}\). Moreover, there exists a constant \(M\) such that \[ \|\text{smb}_p\,A\|:= \sup_{(t,\lambda)\in\mathbb{T}_+ \times\overline{\mathbb{R}}}\|\text{smb}_p\,A(t,\lambda)\|_\infty\leq M\inf_{K\in K(l^p)}\|A+K\| \] for every operator \(A\in\text{TH}(PC_p)\), where \(\|B\|_\infty\) refers to the spectral norm of the matrix \(B\).
(c) An operator \(A\in\text{TH}(PC_p)\) is Fredholm on the space \(l^p\) if and only if the function \(\text{smb}_p\,A\) is invertible in \(\mathcal{F}\).
(d) The quotient algebra \(\text{TH}(PC_p)/K(l^p)\) is inverse closed in the Calkin algebra \(L(l^p)/K(l^p)\).
With any Fredholm operator \(A\in\text{TH}(PC_p)\), the authors associate the function \(W(A):\mathbb{T}_+\times\overline{\mathbb{R}} \to\mathbb{C}\) defined by \[ W(A)(t,\lambda)=\begin{cases} \text{smb}_p\,A(t,\lambda)/\text{smb}_p\,A (t,\mp\infty) & \text{if }\;t=\pm 1,\\ \det\text{smb}_p\,A(t,\lambda)/(a_{22}(t,+\infty)a_{22}(t,-\infty)) & \text{if }\;t\in\mathbb{T}^0_+,\end{cases} \] where \(\text{smb}_p\,A(t,\lambda)=(a_{ij}(t,\lambda))_{i,j=1}^2\) for \(t\in\mathbb{T}^0_+\). The image of the function \(W(A)\), when \(\lambda\) runs \(\overline{\mathbb{R}}\) from \(-\infty\) to \(+\infty\) at all points \(t_0\in\mathbb{T}_+\) where the function \(W(A)(t_0,\cdot)\) is not constant, and when \(t\) for fixed value \(\lambda=+\infty\) traces all arcs of \(\mathbb{T}_+\) obtained by the partition of \(\mathbb{T}_+\) by the mentioned points \(t_0\), is a closed oriented curve \(\gamma\) in \(\mathbb{C}\) which does not pass through the origin. Hence the winding number \(\text{wind}_{\,\mathbb{T}_+}W(A)\) is well defined as the increment of the argument of the function \(W(A)\) divided by \(2\pi\) when \(W(A)\) traces out the closed oriented curve \(\gamma\).
Finally, it is proved that, if \(A\in\text{TH}(PC_p)\) is a Fredholm operator on the space \(l^p\), then its index can be calculated by the formula \(\text{ind}A=-\text{wind}_{\,\mathbb{T}_+}\,W(A)\).

MSC:

47B35 Toeplitz operators, Hankel operators, Wiener-Hopf operators
47A53 (Semi-) Fredholm operators; index theories
47L15 Operator algebras with symbol structure

References:

[1] Basor, E.; Ehrhardt, T., Factorization of a class of Toeplitz + Hankel operators and the \(A_p\)-condition, J. Operator Theory, 55, 2, 269-283 (2006) · Zbl 1104.47029
[2] Böttcher, A.; Silbermann, B., Analysis of Toeplitz Operators (2006), Springer-Verlag: Springer-Verlag Berlin, Heidelberg, New York · Zbl 1098.47002
[3] Ehrhardt, T., Invertibility theory for Toeplitz + Hankel operators and singular integral operators with flip, J. Funct. Anal., 208, 1, 64-106 (2004) · Zbl 1063.47020
[4] Ehrhardt, T.; Silbermann, B., Approximate identities and stability of discrete convolutions with flip, (Oper. Theory: Adv. Appl., vol. 110 (1999), Birkhäuser: Birkhäuser Basel), 103-132 · Zbl 0938.45011
[5] Finck, T.; Roch, S.; Silbermann, B., Two projections theorems and symbol calculus for operators with massive local spectra, Math. Nachr., 162, 167-185 (1993) · Zbl 0812.47029
[6] Gohberg, I.; Krupnik, N., On the algebra generated by Toeplitz matrices, Funktsional. Anal. i Prilozhen., 3, 2, 46-56 (1969), (in Russian); Engl. transl.: Funct. Anal. Appl. 3 (1969) 119-127 · Zbl 0199.19201
[7] Gohberg, I.; Krupnik, N., Singular integral operators with piecewise continuous coefficients and their symbols, Izv. Akad. Nauk SSSR Ser. Mat., 35, 4, 955-979 (1971), (in Russian); Engl. transl.: Math. USSR Izv. 5 (4) (1971) 955-979 · Zbl 0248.47025
[8] Gohberg, I.; Krupnik, N., Algebras of singular integral operators with shift, Matem. Issled., 8, 2(28), 170-175 (1973), (in Russian); Engl. transl. in Operator Theory: Adv. Appl., vol. 206, Birkhäuser Verlag, Basel, 2010, pp. 213-217 · Zbl 1207.47048
[9] Gohberg, I.; Krupnik, N., One-dimensional singular integral operators with shift, Izv. Akad. Nauk Arm. SSR Ser. Mat., 8, 1, 3-12 (1973), (in Russian); Engl. transl. Operator Theory: Adv. Appl., vol. 206, Birkhäuser Verlag, Basel, 2010, pp. 201-221 · Zbl 1207.47047
[10] Gohberg, I.; Krupnik, N., One-Dimensional Linear Singular Integral Equations. Volume I: Introduction, Volume II: General Theory and Applications (1992), Birkhäuser: Birkhäuser Basel · Zbl 0781.47038
[11] Hagen, R.; Roch, S.; Silbermann, B., Spectral Theory of Approximation Methods for Convolution Equations (1995), Birkhäuser Verlag: Birkhäuser Verlag Basel, Boston, Berlin
[12] Karapetiants, N. K.; Samko, S. G., On Fredholm properties of a class of Hankel operators, Math. Nachr., 217, 75-103 (2000) · Zbl 0966.45010
[13] Lebre, A.; Meister, E.; Teixeira, F., Some results on the invertibility of Wiener-Hopf-Hankel operators, Z. Anal. Anwend., 11, 57-76 (1992) · Zbl 0787.47022
[14] Meister, E.; Speck, F.-O.; Teixeira, F., Wiener-Hopf-Hankel operators for some wedge diffraction problems with mixed boundary conditions, J. Integral Equations Appl., 4, 2, 229-255 (1992) · Zbl 0756.45005
[15] Mikhlin, S. G.; Prössdorf, S., Singular Integral Operators (1985), Springer: Springer Berlin, Heidelberg
[16] Power, S. C., \(C^\ast \)-algebras generated by Hankel and Toeplitz operators, J. Funct. Anal., 31, 52-68 (1979) · Zbl 0401.46036
[17] S. Prössdorf, A. Rathsfeld, Mellin techniques in the numerical analysis for one-dimensional singular integral equations, Report R-MATH 06/88, Karl-Weierstraß-Institut, Berlin, 1988.; S. Prössdorf, A. Rathsfeld, Mellin techniques in the numerical analysis for one-dimensional singular integral equations, Report R-MATH 06/88, Karl-Weierstraß-Institut, Berlin, 1988. · Zbl 0652.65096
[18] Roch, S., Local algebras of Toeplitz operators, Math. Nachr., 152, 69-81 (1991) · Zbl 0766.47006
[19] Roch, S.; Santos, P. A.; Silbermann, B., Non-Commutative Gelfand Theories (2011), Springer: Springer London · Zbl 1209.47002
[20] S. Roch, B. Silbermann, Algebras of convolution operators and their image in the Calkin algebra, Report R-Math-05-90, Karl-Weierstraß-Institut, Berlin, 1990.; S. Roch, B. Silbermann, Algebras of convolution operators and their image in the Calkin algebra, Report R-Math-05-90, Karl-Weierstraß-Institut, Berlin, 1990. · Zbl 0717.47019
[21] Silbermann, B., The \(C^\ast \)-algebra generated by Toeplitz and Hankel operators with piecewise quasicontinuous symbols, Integral Equations Operator Theory, 10, 5, 730-738 (1987) · Zbl 0647.47037
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.