×

\(L^p\)-bounds for quasi-geostrophic equations via functional analysis. (English) Zbl 1272.35165

J. Math. Phys. 52, No. 8, 083101, 12 p. (2011); erratum 54, No. 7, 079902, 1 p. (2013).
Summary: We give a proof of \(L^p\)-bounds for the quasi-geostrophic equation and other non-local equations. The proof uses mainly tools from functional analysis, notably the product formulas (also known as “operator splitting methods”) and the Bochner-Pollard subordination identities, hence it could be applicable to other equations. {
©2011 American Institute of Physics}
Editorial remark: In the erratum, an incorrect numbering of the references is fixed: References 1-13 should be the next one, Ref 14 should be Ref 16, Ref 15 should be Ref 1, Ref 16 should be Ref 15.

MSC:

35Q35 PDEs in connection with fluid mechanics
76E20 Stability and instability of geophysical and astrophysical flows
76U05 General theory of rotating fluids
86A05 Hydrology, hydrography, oceanography
86A10 Meteorology and atmospheric physics
Full Text: DOI

References:

[1] DOI: 10.1016/j.jfa.2010.10.008 · Zbl 1232.65103 · doi:10.1016/j.jfa.2010.10.008
[2] DOI: 10.1007/s00220-004-1055-1 · Zbl 1309.76026 · doi:10.1007/s00220-004-1055-1
[3] DOI: 10.1002/cpa.3160310205 · Zbl 0358.65082 · doi:10.1002/cpa.3160310205
[4] DOI: 10.1016/j.anihpc.2008.11.002 · Zbl 1171.35372 · doi:10.1016/j.anihpc.2008.11.002
[5] Evans L. C., Partial Differential Equations (1998) · Zbl 0902.35002
[6] Fattorini H. O., The Cauchy Problem, Encyclopedia of Mathematics and its Applications 18 (1983) · Zbl 0493.34005
[7] DOI: 10.1007/BFb0089647 · doi:10.1007/BFb0089647
[8] DOI: 10.1007/978-3-642-65183-0 · doi:10.1007/978-3-642-65183-0
[9] DOI: 10.1063/1.1704124 · Zbl 0133.22905 · doi:10.1063/1.1704124
[10] DOI: 10.1090/S0002-9904-1946-08672-3 · Zbl 0060.25007 · doi:10.1090/S0002-9904-1946-08672-3
[11] Showalter R. E., Monotone Operators in Banach Space and Nonlinear Partial Differential Equations (1997) · Zbl 0870.35004
[12] Stein E. M., Princeton Mathematical Series 30, in: Singular Integrals and Differentiability Properties of Functions (1970) · Zbl 0207.13501
[13] Taylor M. E., Partial Differential Equations III (1997)
[14] Valdinoci E., Bol. Soc. Esp. Mat. Apl. SEMA (49) pp 33– (2009)
[15] DOI: 10.1016/j.jfa.2010.07.018 · Zbl 1217.47082 · doi:10.1016/j.jfa.2010.07.018
[16] Widder D. V., Pure and Applied Mathematics 67, in: The Heat Equation (1975)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.