×

Quotients of absolute Galois groups which determine the entire Galois cohomology. (English) Zbl 1272.12015

In order to characterize profinite groups which are realizable as absolute Galois groups \(G_F\) of fields \(F\), the authors look here for cohomological constrains derived from the Milnor-Bloch-Kato conjecture (recently proved by Voevodsky and others). Recall that this theorem asserts that for all \(r \geq 0\) and all \(m\) prime to \(\text{char}\,F\), there is a canonical isomorphism \(K^M_r (F)/m \displaystyle\buildrel\sim \over \to H^r (G_F, \mu^{\otimes r}_m).\) Using this, the authors reveal a surprisingly close connection between the “small” quotient \(G^{[3]}_F = G_F/G^{(3)}_F\) in the descending \(q\)-central sequence \(G^{(i)}_F\) and the cohomology algebra \(H^\ast (G_F) = H^\ast (G_F, {\mathbb Z}/q),\) where \(q\) is a prime power and \(F\) is assumed to contain \(\mu_q.\) The connection consists in four main properties:
A. The inflation map gives an isomorphism \(H^\ast (G^{[3]}_F) \displaystyle\buildrel \sim \over \to H^\ast(G_F)\).
B. \(G^{[3]}_F\) is uniquely determined by \(H^r (G_F)\) for \(r = 1,2\), the cup product \[ H^1 (G_F) \times H^1(G_F) \to H^2 (G_F) \] and the Bockstein morphism \(H^1 (G_F) \to H^2 (G_F)\).
C. Let \(F_1, F_2\) be fields and \(\pi: G_{F_1}\to G_{F_2}\) a continuous homomorphism. The following conditions are equivalent :
(i) the induced map \(\pi^\ast\;:\;H^\ast (G_{F_2}) \to H^\ast (G_{F_1})\) is an isomorphism
(ii) the induced map \(\pi^{[3]}: G^{[3]}_{F_1} \to G^{[3]}_{F_2}\) is an isomorphism.
An interesting consequence is:
D. Let \(F_1, F_2\) be fields containing \(\mu_p\) and let \(\pi: G_1(F) (p) \to G_{F_2} (p)\) be a continuous homomorphisms between the maximal pro-\(p\) quotients of the \(G_{F_i}\)’s. Then \(\pi\) is an isomorphism if and only if the induced map \(\pi^{[3]} : G^{[3]}_{F_1} \to G^{[3]}_{F_2}\) is an isomorphism.
Using these results, the authors can give new examples of pro \(p\)-groups which cannot be realized as maximal pro-\(p\) Galois groups of fields.
The approach in this paper is group-theoretic, and the main results above are actually proved for arbitrary profinite groups \(G\) which satisfy certain cohomological conditions which are implied (when \(G = G_F)\) by the Milnor-Bloch-Kato conjecture. This “axiomatization” requires, as a counterpart, an ingenuous layout of subtle cohomological properties. Note that when restricted to absolute Galois groups, the arguments can be made more direct by using techniques from the embedding problem of fields ; see e.g. the report by the reviewer [“Étude kummerienne de la \(q\)-suite centrale descendante d’un groupe de Galois”, Algèbre et Théorie des Nombres, Publ. Math. Besançon, 2, 123–139 (2012; Zbl 1309.12007)].

MSC:

12G05 Galois cohomology
12F10 Separable extensions, Galois theory
12E30 Field arithmetic

Citations:

Zbl 1309.12007

References:

[1] Adem A., Karagueuzian D.B., Mináč J.: On the cohomology of Galois groups determined by Witt rings. Adv. Math. 148, 105–160 (1999) · Zbl 0947.11015 · doi:10.1006/aima.1999.1847
[2] Becker E.: Euklidische Körper und euklidische Hüllen von Körpern. J. Reine Angew. Math. 268/269, 41–52 (1974)
[3] Becker E.: Formal-reelle Körper mit streng-auflösbarer absoluter Galoisgruppe. Math. Ann. 238, 203–206 (1978) · doi:10.1007/BF01420247
[4] Benson D.J., Lemire N., Mináč J., Swallow J.: Detecting pro-p-groups that are not absolute Galois groups. J. Reine Angew. Math. 613, 175–191 (2007) · Zbl 1204.12007
[5] Bogomolov, F.A.: On two conjectures in birational algebraic geometry. In: Proc. of Tokyo Satellite Conference ICM-90 Analytic and Algebraic Geometry, vol. 613, pp. 26–52 (1991) · Zbl 0789.14021
[6] Bogomolov F.A.: Abelian subgroups of Galois groups. Math. USSR Izv. 38, 27–67 (1992) · Zbl 0815.12004 · doi:10.1070/IM1992v038n01ABEH002186
[7] Bogomolov F.A.: On the structure of Galois groups of the fields of rational functions. Proc. Sympos. Pure Math. (Part 2) 58, 83–88 (1995) · Zbl 0843.12003
[8] Bogomolov, F.A.: Stable cohomology of finite and profinite groups. In: Algebraic Groups. Universitätsverlag Göttingen, Göttingen, pp. 19–49 (2007) · Zbl 1129.20031
[9] Bogomolov F.A., Tschinkel Y.: Reconstruction of function fields. Geom. Funct. Anal. 18, 400–462 (2008) · Zbl 1155.14016 · doi:10.1007/s00039-008-0665-8
[10] Bogomolov, F.A., Tschinkel, Y.: Milnor K 2 and field homomorphisms. In: Surveys in Differential Geometry XIII, pp. 223–224. International Press (2009) · Zbl 1247.19002
[11] Bogomolov, F.A., Tschinkel, Y.: Introduction to birational anabelian geometry. http://www.math.nyu.edu/\(\sim\)tschinke/papers/yuri/10msri/msri7.pdf (2010, preprint) · Zbl 1290.14017
[12] Chernousov V., Gille P., Reichstein Z.: Resolving G-torsors by abelian base extensions. J. Algebra 296, 561–581 (2006) · Zbl 1157.14311 · doi:10.1016/j.jalgebra.2005.02.026
[13] Efrat I., Haran D.: On Galois groups over Pythagorean and semi-real closed fields. Isr. J. Math. 85, 57–78 (1994) · Zbl 0799.12002 · doi:10.1007/BF02758636
[14] Efrat I.: Finitely generated pro-p absolute Galois groups over global fields. J. Number Theory 77, 83–96 (1999) · Zbl 0953.12005 · doi:10.1006/jnth.1999.2379
[15] Efrat, I., Mináč, J.: On the descending central sequence of absolute Galois groups. (2008, preprint)
[16] Fried M.D., Jarden M.: Field Arithmetic, pp. xxiv+780. Springer-Verlag, New York (2005)
[17] Mináč J., Gao W.: Milnor’s conjecture and Galois theory I. Fields Inst. Commun. 16, 95–110 (1997) · Zbl 0883.12003
[18] Geyer W.: Unendlische Zahlkörper, über denen jede Gleichung auflösbar von beschränkter Stufe ist. J. Number Theory 1, 346–374 (1969) · Zbl 0192.40101 · doi:10.1016/0022-314X(69)90050-X
[19] Gille P., Szamuely T.: Central Simple Algebras and Galois Cohomology. Cambridge University Press, Cambridge (2006) · Zbl 1137.12001
[20] Gildenhuys D.: On pro-p groups with a single defining relator. Inv. Math. 5, 357–366 (1968) · Zbl 0159.30601 · doi:10.1007/BF01389782
[21] Haesemeyer, C., Weibel, C.: Norm varieties and the chain lemma (after Markus Rost). In: Algebraic Topology. Proc. Abel Symposium 2007, pp. 95–130. Springer-Verlag, New York (2009) · Zbl 1244.19003
[22] Koch, H.: Galois theory of p-extensions. In: Springer Monographs in Mathematics, xiv+190. Springer-Verlag, New York (2002) · Zbl 1023.11002
[23] Koenigsmann J.: Solvable absolute Galois groups are metabelian. Inv. Math. 144, 1–22 (2001) · Zbl 1016.12005 · doi:10.1007/s002220000117
[24] Labute J.P.: Demuškin groups of rank $${\(\backslash\)aleph_{0}}$$ . Bull. Soc. Math. France 94, 211–244 (1966) · Zbl 0154.02001
[25] Labute J.P.: Algèbres de Lie et pro-p-groupes définis par une seule relation. Inv. Math. 4, 142–158 (1967) · Zbl 0212.36303 · doi:10.1007/BF01425247
[26] Mahé L., Mináč J., Smith T.L.: Additive structure of multiplicative subgroups of fields and Galois theory. Doc. Math. 9, 301–355 (2004) · Zbl 1073.11025
[27] Merkurjev A.S., Suslin A.A.: K-cohomology of Severi-Brauer varieties and the norm residue homomorphism. Izv. Akad. Nauk SSSR Ser. Mat. 46, 307–340 (1982) · Zbl 0525.18008
[28] Milnor, J.: Algebraic K-theory and quadratic forms. Inv. Math. 9, 318–344 (1969/1970) · Zbl 0199.55501
[29] Mináč J., Spira M.: Formally real fields, Pythagorean fields, C-fields and W-groups. Math. Z. 205, 519–530 (1990) · Zbl 0692.12005 · doi:10.1007/BF02571260
[30] Mináč J., Spira M.: Witt rings and Galois groups. Ann. Math. 144, 35–60 (1996) · Zbl 0861.11030 · doi:10.2307/2118582
[31] Neukirch J., Schmidt A., Wingberg K.: Cohomology of Number Fields, 2nd edn. Springer-Verlag, New York (2008) · Zbl 1136.11001
[32] Nguyen, Q.D.T.: Étude Kummerienne de la p-suite centrale descendante d’aprés Gao, Mináč & Spira (1996, unpublished notes)
[33] Orlov D., Vishik A., Voevodsky V.: An exact sequence for $${K\^M_*/2}$$ with applications to quadratic forms. Ann. Math. 165, 1–13 (2007) · Zbl 1124.14017 · doi:10.4007/annals.2007.165.1
[34] Romanovskij N.S.: Generalized theorem on the freedom for pro-p-groups. Sib. Mat. Zh. 156, 154–170 (1986) · Zbl 0599.20038
[35] Serre J.: Sur la dimension cohomologique des groupes profinis. Topology 3, 413–420 (1965) · Zbl 0136.27402 · doi:10.1016/0040-9383(65)90006-6
[36] Serre J.: Galois Cohomology, pp. x+210. Springer-Verlag, New York (2002)
[37] Spira, M.: Witt rings and Galois groups. Ph.D. thesis, University of California, Berkeley (1987) · Zbl 0154.01801
[38] Voevodsky V.: Motivic cohomology with $${\(\backslash\)mathbb{Z}/2}$$ -coefficients. Publ. Math. Inst. Hautes Études Sci. 98, 59–104 (2003) · Zbl 1057.14028 · doi:10.1007/s10240-003-0010-6
[39] Voevodsky, V.: On motivic cohomology with $${\(\backslash\)mathbb{Z}/l}$$ -coefficients. Ann. Math. (2003, preprint) · Zbl 1057.14028
[40] Weibel C.A.: The proof of the Bloch–Kato conjecture. ICTP Lecture Notes Series 23, 1–28 (2008) · Zbl 1200.14042
[41] Weibel C.A.: The norm residue isomorphism theorem. J. Topol. 2, 346–372 (2009) · Zbl 1214.14018 · doi:10.1112/jtopol/jtp013
[42] Würfel T.: On a class of pro-p groups occurring in Galois theory. J. Pure Appl. Algebra 36, 95–103 (1985) · Zbl 0561.20029 · doi:10.1016/0022-4049(85)90063-5
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.