×

Strong convergence theorem for Bregman strongly nonexpansive mappings and equilibrium problems in reflexive Banach spaces. (English) Zbl 1271.47068

Summary: By using a new hybrid method, a strong convergence theorem for finding a common element of the set of solutions of an equilibrium problem and the set of fixed points of Bregman strongly nonexpansive mappings in a reflexive Banach space is proved.

MSC:

47J25 Iterative procedures involving nonlinear operators
47H09 Contraction-type mappings, nonexpansive mappings, \(A\)-proper mappings, etc.

References:

[1] E. Blum and W. Oettli, “From optimization and variational inequalities to equilibrium problems,” The Mathematics Student, vol. 63, no. 1-4, pp. 123-145, 1994. · Zbl 0888.49007
[2] P. L. Combettes and S. A. Hirstoaga, “Equilibrium programming in Hilbert spaces,” Journal of Nonlinear and Convex Analysis, vol. 6, no. 1, pp. 117-136, 2005. · Zbl 1109.90079
[3] A. Moudafi, “Second-order differential proximal methods for equilibrium problems,” Journal of Inequalities in Pure and Applied Mathematics, vol. 4, no. 1, article 18, 7 pages, 2003. · Zbl 1175.90413
[4] A. Tada and W. Takahashi, “Strong convergence theorem for an equilibrium problem and a nonexpansive mapping,” in Nonlinear Analysis and Convex Analysis, A. Tada and W. Takahashi, Eds., pp. 609-617, Yokohama Publishers, Yokohama, Japan, 2007. · Zbl 1122.47055
[5] W. Takahashi and K. Zembayashi, “Strong and weak convergence theorems for equilibrium problems and relatively nonexpansive mappings in Banach spaces,” Nonlinear Analysis: Theory, Methods & Applications, vol. 70, no. 1, pp. 45-57, 2009. · Zbl 1170.47049 · doi:10.1016/j.na.2007.11.031
[6] S. Takahashi and W. Takahashi, “Viscosity approximation methods for equilibrium problems and fixed point problems in Hilbert spaces,” Journal of Mathematical Analysis and Applications, vol. 331, no. 1, pp. 506-515, 2003. · Zbl 1122.47056 · doi:10.1016/j.jmaa.2006.08.036
[7] K. Nakajo and W. Takahashi, “Strong convergence theorems for nonexpansive mappings and nonexpansive semigroups,” Journal of Mathematical Analysis and Applications, vol. 279, no. 2, pp. 372-379, 2003. · Zbl 1035.47048 · doi:10.1016/S0022-247X(02)00458-4
[8] W. Takahashi, Y. Takeuchi, and R. Kubota, “Strong convergence theorems by hybrid methods for families of nonexpansive mappings in Hilbert spaces,” Journal of Mathematical Analysis and Applications, vol. 341, no. 1, pp. 276-286, 2008. · Zbl 1134.47052 · doi:10.1016/j.jmaa.2007.09.062
[9] J.-B. Hiriart-Urruty and C. Lemaréchal, Convex Analysis and Minimization Algorithms II, vol. 306 of Grundlehren der Mathematischen Wissenschaften, Springer, 1993. · Zbl 0795.49002
[10] C. Z\ualinescu, Convex Analysis in General Vector Spaces, World Scientific, River Edge, NJ, USA, 2002. · doi:10.1142/9789812777096
[11] E. Asplund and R. T. Rockafellar, “Gradients of convex functions,” Transactions of the American Mathematical Society, vol. 139, pp. 443-467, 1969. · Zbl 0181.41901 · doi:10.2307/1995335
[12] J. F. Bonnans and A. Shapiro, Perturbation Analysis of Optimization Problems, Springer, New York, NY, USA, 2000. · Zbl 0966.49001
[13] S. Reich and S. Sabach, “A strong convergence theorem for a proximal-type algorithm in reflexive Banach spaces,” Journal of Nonlinear and Convex Analysis, vol. 10, no. 3, pp. 471-485, 2009. · Zbl 1180.47046
[14] H. H. Bauschke, J. M. Borwein, and P. L. Combettes, “Essential smoothness, essential strict convexity, and Legendre functions in Banach spaces,” Communications in Contemporary Mathematics, vol. 3, no. 4, pp. 615-647, 2001. · Zbl 1032.49025 · doi:10.1142/S0219199701000524
[15] H. H. Bauschke and J. M. Borwein, “Legendre functions and the method of random Bregman projections,” Journal of Convex Analysis, vol. 4, no. 1, pp. 27-67, 1997. · Zbl 0894.49019
[16] Y. Censor and A. Lent, “An iterative row-action method for interval convex programming,” Journal of Optimization Theory and Applications, vol. 34, no. 3, pp. 321-353, 1981. · Zbl 0431.49042 · doi:10.1007/BF00934676
[17] L. M. Brègman, “The relaxation method of finding a common point of convex sets and its application to the solution of problems in convex programming,” USSR Computational Mathematics and Mathematical Physics, vol. 7, no. 3, pp. 200-217, 1967. · doi:10.1016/0041-5553(67)90040-7
[18] D. Butnariu and E. Resmerita, “Bregman distances, totally convex functions, and a method for solving operator equations in Banach spaces,” Abstract and Applied Analysis, vol. 2006, Article ID 84919, 39 pages, 2006. · Zbl 1130.47046 · doi:10.1155/AAA/2006/84919
[19] E. Resmerita, “On total convexity, Bregman projections and stability in Banach spaces,” Journal of Convex Analysis, vol. 11, no. 1, pp. 1-16, 2004. · Zbl 1080.46010
[20] D. Butnariu and A. N. Iusem, Totally Convex Functions for Fixed Points Computation and Infinite Dimensional Optimization, Kluwer Academic Publishers, Dordrecht, The Netherlands, 2000. · Zbl 0960.90092 · doi:10.1007/978-94-011-4066-9
[21] S. Reich and S. Sabach, “Two strong convergence theorems for a proximal method in reflexive Banach spaces,” Numerical Functional Analysis and Optimization, vol. 31, no. 1-3, pp. 22-44, 2010. · Zbl 1200.47085 · doi:10.1080/01630560903499852
[22] Y. Censor and S. Reich, “Iterations of paracontractions and firmly nonexpansive operators with applications to feasibility and optimization,” Optimization, vol. 37, no. 4, pp. 323-339, 1996. · Zbl 0883.47063 · doi:10.1080/02331939608844225
[23] S. Reich, “A weak convergence theorem for the alternating method with Bregman distances,” in Theory and applications of Nonlinear Operators of Accretive and Monotone Type, pp. 313-318, Marcel Dekker, New York, NY, USA, 1996. · Zbl 0943.47040
[24] S. Reich and S. Sabach, “Two strong convergence theorems for Bregman strongly nonexpansive operators in reflexive Banach spaces,” Nonlinear Analysis: Theory, Methods & Applications, vol. 73, no. 1, pp. 122-135, 2010. · Zbl 1226.47089 · doi:10.1016/j.na.2010.03.005
[25] R. E. Bruck and S. Reich, “Nonexpansive projections and resolvents of accretive operators in Banach spaces,” Houston Journal of Mathematics, vol. 3, no. 4, pp. 459-470, 1977. · Zbl 0383.47035
[26] S. Reich and S. Sabach, “Existence and approximation of fixed points of Bregman firmly nonexpansive mappings in reflexive Banach spaces,” in Fixed-Point Algorithms for Inverse Problems in Science and Engineering, pp. 301-316, Springer, New York, NY, USA, 2011. · Zbl 1245.47015 · doi:10.1007/978-1-4419-9569-8_15
[27] R. P. Phelps, Convex Functions, Monotone Operators, and Differentiability, vol. 1364 of Lecture Notes in Mathematics, Springer, Berlin, Germany, 2nd edition, 1993. · Zbl 0921.46039 · doi:10.1007/978-3-540-46077-0
[28] E. Blum and W. Oettli, “From optimization and variational inequalities to equilibrium problems,” The Mathematics Student, vol. 63, no. 1-4, pp. 123-145, 1994. · Zbl 0888.49007
[29] P. L. Combettes and S. A. Hirstoaga, “Equilibrium programming in Hilbert spaces,” Journal of Nonlinear and Convex Analysis, vol. 6, no. 1, pp. 117-136, 2005. · Zbl 1109.90079
[30] A. Ambrosetti and G. Prodi, A Primer of Nonlinear Analysis, Cambridge University Press, Cambridge, UK, 1993. · Zbl 0781.47046
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.