×

Painting a graph with competing random walks. (English) Zbl 1271.05091

Summary: Let \(X_1\), \(X_2\) be independent random walks on \({\mathbb{Z}}^d_n\), \(d \geq 3\), each starting from the uniform distribution. Initially, each site of \({\mathbb{Z}}^d_n\) is unmarked, and, whenever \(X_i\) visits such a site, it is set irreversibly to \(i\). The mean of \(|{\mathcal{A}}_i|\), the cardinality of the set \({\mathcal{A}}_i\) of sites painted by \(i\), once all of \({\mathbb{Z}}^d_n\) has been visited, is \(\frac{1}{2} n^d\) by symmetry. We prove the following conjecture due to Pemantle and Peres: for each \(d \geq 3\) there exists a constant \(\alpha_d\) such that
\[ \lim_{n\to\infty} \text{Var}\left(|{\mathcal A}_i|\right)/h_d(n) = \frac{1}{4}\alpha_d, \]
where \(h_3(n) = n_4\), \(h_4(n) = n^4(\log n)\) and \(h_d(n) = n^d\) for \(d \geq 5\).
We will also identify \(\alpha_d\) explicitly and show that \(\alpha_d \to 1\) as \(d \to\infty\). This is a special case of a more general theorem which gives the asymptotics of \(\text{Var}\left(|{\mathcal{A}}_i|\right)\) for a large class of transient, vertex transitive graphs; other examples include the hypercube and the Caley graph of the symmetric group generated by transpositions.

MSC:

05C81 Random walks on graphs
60G50 Sums of independent random variables; random walks
60F99 Limit theorems in probability theory
05C25 Graphs and abstract algebra (groups, rings, fields, etc.)

References:

[1] Bhattacharya, R. N. and Ranga Rao, R. (1976). Normal Approximation and Asymptotic Expansions . Wiley, New York. · Zbl 0331.41023
[2] Brummelhuis, M. J. A. M. and Hilhorst, H. J. (1991). Covering of a finite lattice by a random walk. Phys. A 176 387-408. · doi:10.1016/0378-4371(91)90220-7
[3] Dembo, A., Peres, Y., Rosen, J. and Zeitouni, O. (2001). Thick points for planar Brownian motion and the Erdős-Taylor conjecture on random walk. Acta Math. 186 239-270. · Zbl 1008.60063 · doi:10.1007/BF02401841
[4] Dembo, A., Peres, Y., Rosen, J. and Zeitouni, O. (2004). Cover times for Brownian motion and random walks in two dimensions. Ann. of Math. (2) 160 433-464. · Zbl 1068.60018 · doi:10.4007/annals.2004.160.433
[5] Dembo, A., Peres, Y., Rosen, J. and Zeitouni, O. (2006). Late points for random walks in two dimensions. Ann. Probab. 34 219-263. · Zbl 1100.60057 · doi:10.1214/009117905000000387
[6] Dembo, A. and Sznitman, A.-S. (2006). On the disconnection of a discrete cylinder by a random walk. Probab. Theory Related Fields 136 321-340. · Zbl 1105.60029 · doi:10.1007/s00440-005-0485-9
[7] Diaconis, P. and Shahshahani, M. (1981). Generating a random permutation with random transpositions. Z. Wahrsch. Verw. Gebiete 57 159-179. · Zbl 0485.60006 · doi:10.1007/BF00535487
[8] Dicker, L. (2006). Coloring a \(d\geq3\) dimensional lattice with two independent random walks. M.S. thesis, Univ. Pennsylvania. Available at .
[9] Gomes, S. R. Jr., Lucena, L. S., da Silva, L. R. and Hilhorst, H. J. (1996). Coloring of a one-dimensional lattice by two independent random walkers. Phys. A 225 81-88. · doi:10.1016/0378-4371(95)00424-6
[10] Jain, N. and Orey, S. (1968). On the range of random walk. Israel J. Math. 6 373-380. · Zbl 0181.20901 · doi:10.1007/BF02771217
[11] Jain, N. C. and Pruitt, W. E. (1970). The central limit theorem for the range of transient random walk. Bull. Amer. Math. Soc. ( N.S. ) 76 758-759. · Zbl 0232.60047 · doi:10.1090/S0002-9904-1970-12536-8
[12] Lawler, G. F. (1991). Intersections of Random Walks . Birkhäuser, Boston, MA. · Zbl 1228.60004
[13] Levin, D. A., Peres, Y. and Wilmer, E. L. (2009). Markov Chains and Mixing Times . Amer. Math. Soc., Providence, RI. · Zbl 1160.60001
[14] Matthews, P. (1988). Covering problems for Markov chains. Ann. Probab. 16 1215-1228. · Zbl 0712.60076 · doi:10.1214/aop/1176991686
[15] Miller, J. and Peres, Y. (2012). Uniformity of the uncovered set of random walk and cutoff for lamplighter chains. Ann. Probab. 40 535-577. · Zbl 1251.60058 · doi:10.1214/10-AOP624
[16] Pemantle, R. and Peres, Y. Private communication.
[17] Sznitman, A.-S. (2010). Vacant set of random interlacements and percolation. Ann. of Math. (2) 171 2039-2087. · Zbl 1202.60160 · doi:10.4007/annals.2010.171.2039
[18] Windisch, D. (2008). Random walk on a discrete torus and random interlacements. Electron. Commun. Probab. 13 140-150. · Zbl 1187.60089 · doi:10.1214/ECP.v13-1359
[19] Windisch, D. (2010). Random walks on discrete cylinders with large bases and random interlacements. Ann. Probab. 38 841-895. · Zbl 1191.60062 · doi:10.1214/09-AOP497
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.