×

Supersymmetry, localization and quantum entropy function. (English) Zbl 1270.81150

Summary: \(\text{AdS}_2/\text{CFT}_1\) correspondence leads to a prescription for computing the degeneracy of black hole states in terms of path integral over string fields living on the near horizon geometry of the black hole. In this paper we make use of the enhanced supersymmetries of the near horizon geometry and localization techniques to argue that the path integral receives contribution only from a special class of string field configurations which are invariant under a subgroup of the supersymmetry transformations. We identify saddle points which are invariant under this subgroup. We also use our analysis to show that the integration over infinite number of zero modes generated by the asymptotic symmetries of \(\text{AdS}_2\) generate a finite contribution to the path integral.

MSC:

81T30 String and superstring theories; other extended objects (e.g., branes) in quantum field theory
83C57 Black holes
81T60 Supersymmetric field theories in quantum mechanics
81S40 Path integrals in quantum mechanics

References:

[1] A. Sen, Quantum entropy function from AdS2/CFT1correspondence, Int. J. Mod. Phys.A 24 (2009) 4225 [arXiv:0809.3304] [SPIRES]. · Zbl 1175.83045
[2] N. Banerjee, D.P. Jatkar and A. Sen, Asymptotic expansion of the N = 4 dyon degeneracy, JHEP05 (2009) 121 [arXiv:0810.3472] [SPIRES]. · doi:10.1088/1126-6708/2009/05/121
[3] A. Sen, Arithmetic of quantum entropy function, JHEP08 (2009) 068 [arXiv:0903.1477] [SPIRES]. · doi:10.1088/1126-6708/2009/08/068
[4] D. Astefanesei, K. Goldstein, R.P. Jena, A. Sen and S.P. Trivedi, Rotating attractors, JHEP10 (2006) 058 [hep-th/0606244] [SPIRES]. · doi:10.1088/1126-6708/2006/10/058
[5] A. Sen, Entropy function and AdS2/CFT1correspondence, JHEP11 (2008) 075 [arXiv:0805.0095] [SPIRES]. · doi:10.1088/1126-6708/2008/11/075
[6] R.K. Gupta and A. Sen, AdS3/CFT2 to AdS2/CFT1, JHEP04 (2009) 034 [arXiv:0806.0053] [SPIRES]. · doi:10.1088/1126-6708/2009/04/034
[7] R.M. Wald, Black hole entropy is the Noether charge, Phys. Rev.D 48 (1993) 3427 [gr-qc/9307038] [SPIRES]. · Zbl 0942.83512
[8] T. Jacobson, G. Kang and R.C. Myers, On black hole entropy, Phys. Rev.D 49 (1994) 6587 [gr-qc/9312023] [SPIRES].
[9] V. Iyer and R.M. Wald, Some properties of Noether charge and a proposal for dynamical black hole entropy, Phys. Rev.D 50 (1994) 846 [gr-qc/9403028] [SPIRES].
[10] T. Jacobson, G. Kang and R.C. Myers, Black hole entropy in higher curvature gravity, gr-qc/9502009 [SPIRES]. · Zbl 0862.53068
[11] A. Sen, Black hole entropy function and the attractor mechanism in higher derivative gravity, JHEP09 (2005) 038 [hep-th/0506177] [SPIRES]. · doi:10.1088/1126-6708/2005/09/038
[12] A. Sen, Black hole entropy function, attractors and precision counting of microstates, Gen. Rel. Grav.40 (2008) 2249 [arXiv:0708.1270] [SPIRES]. · Zbl 1153.83007 · doi:10.1007/s10714-008-0626-4
[13] J.J. Duistermaat and G.J. Heckman, On the variation in the cohomology of the symplectic form of the reduced phase space, Invent. Math.69 (1982) 259 [SPIRES]. · Zbl 0503.58015 · doi:10.1007/BF01399506
[14] E. Witten, Topological quantum field theory, Commun. Math. Phys.117 (1988) 353 [SPIRES]. · Zbl 0656.53078 · doi:10.1007/BF01223371
[15] E. Witten, The N matrix model and gauged WZW models, Nucl. Phys.B 371 (1992) 191 [SPIRES]. · doi:10.1016/0550-3213(92)90235-4
[16] E. Witten, Mirror manifolds and topological field theory, hep-th/9112056 [SPIRES]. · Zbl 0834.58013
[17] E. Witten, Two-dimensional gauge theories revisited, J. Geom. Phys.9 (1992) 303 [hep-th/9204083] [SPIRES]. · Zbl 0768.53042 · doi:10.1016/0393-0440(92)90034-X
[18] A.S. Schwarz and O. Zaboronsky, Supersymmetry and localization, Commun. Math. Phys.183 (1997) 463 [hep-th/9511112] [SPIRES]. · Zbl 0873.58003 · doi:10.1007/BF02506415
[19] O.V. Zaboronsky, Dimensional reduction in supersymmetric field theories, J. Phys.A 35 (2002) 5511 [SPIRES]. · Zbl 1066.81612
[20] N.A. Nekrasov, Seiberg-Witten prepotential from instanton counting, Adv. Theor. Math. Phys.7 (2004) 831 [hep-th/0206161] [SPIRES]. · Zbl 1056.81068
[21] V. Pestun, Localization of gauge theory on a four-sphere and supersymmetric Wilson loops, arXiv:0712.2824 [SPIRES]. · Zbl 1257.81056
[22] M.F. Atiyah, Elliptic operators and compact groups, Springer-Verlag, Berlin Germany (1974). · Zbl 0297.58009
[23] P. Shanahan, The Atiyah-Singer index theorem: an introduction, Springer-Verlag, Berlin Germany (1976).
[24] C. Beasley et al., Why ZBH = |Ztop|2, hep-th/0608021 [SPIRES].
[25] J. Gomis, T. Okuda and D. Trancanelli, Quantum ’t Hooft operators and S-duality in N = 4 super Yang-Mills, arXiv:0904.4486 [SPIRES]. · Zbl 1200.81109
[26] R. Camporesi and A. Higuchi, Spectral functions and zeta functions in hyperbolic spaces, J. Math. Phys.35 (1994) 4217 [SPIRES]. · Zbl 0811.58061 · doi:10.1063/1.530850
[27] S. Murthy and B. Pioline, A Farey tale for N = 4 dyons, JHEP09 (2009) 022 [arXiv:0904.4253] [SPIRES]. · doi:10.1088/1126-6708/2009/09/022
[28] S. Banerjee and A. Sen, Duality orbits, dyon spectrum and gauge theory limit of heterotic string theory on T6, JHEP03 (2008) 022 [arXiv:0712.0043] [SPIRES]. · doi:10.1088/1126-6708/2008/03/022
[29] S. Banerjee and A. Sen, S-duality action on discrete T-duality invariants, JHEP04 (2008) 012 [arXiv:0801.0149] [SPIRES]. · Zbl 1246.81203 · doi:10.1088/1126-6708/2008/04/012
[30] A. Dabholkar, D. Gaiotto and S. Nampuri, Comments on the spectrum of CHL dyons, JHEP01 (2008) 023 [hep-th/0702150] [SPIRES]. · doi:10.1088/1126-6708/2008/01/023
[31] J.H. Schwarz and A. Sen, Type IIA dual of the six-dimensional CHL compactification, Phys. Lett.B 357 (1995) 323 [hep-th/9507027] [SPIRES].
[32] R. Dijkgraaf, E.P. Verlinde and H.L. Verlinde, Counting dyons in N = 4 string theory, Nucl. Phys.B 484 (1997) 543 [hep-th/9607026] [SPIRES]. · Zbl 0925.81230 · doi:10.1016/S0550-3213(96)00640-2
[33] G. Lopes Cardoso, B. de Wit, J. Kappeli and T. Mohaupt, Asymptotic degeneracy of dyonic N = 4 string states and black hole entropy, JHEP12 (2004) 075 [hep-th/0412287] [SPIRES].
[34] D. Shih, A. Strominger and X. Yin, Recounting dyons in N = 4 string theory, JHEP10 (2006) 087 [hep-th/0505094] [SPIRES].
[35] D. Gaiotto, Re-recounting dyons in N = 4 string theory, hep-th/0506249 [SPIRES].
[36] J.R. David and A. Sen, CHL dyons and statistical entropy function from D1-D5 system, JHEP11 (2006) 072 [hep-th/0605210] [SPIRES]. · doi:10.1088/1126-6708/2006/11/072
[37] S. Banerjee, A. Sen and Y.K. Srivastava, Generalities of quarter BPS dyon partition function and dyons of torsion two, JHEP05 (2008) 101 [arXiv:0802.0544] [SPIRES]. · doi:10.1088/1126-6708/2008/05/101
[38] S. Banerjee, A. Sen and Y.K. Srivastava, Partition functions of torsion > 1 dyons in heterotic string theory on T6, JHEP05 (2008) 098 [arXiv:0802.1556] [SPIRES]. · doi:10.1088/1126-6708/2008/05/098
[39] A. Dabholkar, J. Gomes and S. Murthy, Counting all dyons in N = 4 string theory, arXiv:0803.2692 [SPIRES]. · Zbl 1296.81090
[40] N. Berkovits, M. Bershadsky, T. Hauer, S. Zhukov and B. Zwiebach, Superstring theory on AdS2 × S2as a coset supermanifold, Nucl. Phys.B 567 (2000) 61 [hep-th/9907200] [SPIRES]. · Zbl 0951.81040 · doi:10.1016/S0550-3213(99)00683-5
[41] A. Kapustin, Wilson-’t Hooft operators in four-dimensional gauge theories and S-duality, Phys. Rev.D 74 (2006) 025005 [hep-th/0501015] [SPIRES].
[42] L.J. Romans, Selfduality for interacting fields: covariant field equations for six-dimensional chiral supergravities, Nucl. Phys.B 276 (1986) 71 [SPIRES]. · doi:10.1016/0550-3213(86)90016-7
[43] F. Riccioni, Tensor multiplets in six-dimensional (2, 0) supergravity, Phys. Lett.B 422 (1998) 126 [hep-th/9712176] [SPIRES]. · Zbl 0958.83063
[44] S. Deger, A. Kaya, E. Sezgin and P. Sundell, Spectrum of D = 6, N = 4b supergravity on AdS3 × S3, Nucl. Phys.B 536 (1998) 110 [hep-th/9804166] [SPIRES]. · Zbl 0940.83030 · doi:10.1016/S0550-3213(98)00555-0
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.