×

Energy dissipation and contour integral characterizing fracture behavior of incremental plasticity. (English) Zbl 1270.74188

Summary: \(J^{\text{ep}}\)-integral is derived for characterizing the fracture behavior of elastic-plastic materials. The \(J^{\text{ep}}\)-integral differs from Rice’s \(J\)-integral in that the free energy density rather than the stress working density is employed to define energy-momentum tensor. The \(J^{\text{ep}}\)-integral is proved to be path-dependent regardless of incremental plasticity and deformation plasticity. The \(J^{\text{ep}}\)-integral possesses clearly clear physical meaning: (1) the value \(J^{\text{ep}}_{\text{tip}}\) evaluated on the infinitely small contour surrounding the crack tip represents the crack tip energy dissipation; (2) when the global steadystate crack growth condition is approached, the value of \(J^{\text{ep}}_{\text{far-ss}}\) calculated along the boundary contour equals to the sum of crack tip dissipation and bulk dissipation of plastic zone. The theoretical results are verified by simulating mode I crack problems.

MSC:

74R20 Anelastic fracture and damage
Full Text: DOI

References:

[1] Rice, J.R.: A path independent integral and the approximate analysis of strain concentrations by notches and cracks. J. Appl. Mech. 35, 379–386 (1968) · doi:10.1115/1.3601206
[2] Hutchinson, J.W.: Singular behavior at the end of a tensile crack in a hardening material. J. Mech. Phys. Solids 16, 13–31 (1968) · Zbl 0166.20704 · doi:10.1016/0022-5096(68)90014-8
[3] Hutchinson, J.W.: Fundamentals of the phenomenological theory of nonlinear fracture mechanics. J. Appl. Mech. 50, 1042–1051 (1983) · doi:10.1115/1.3167187
[4] Rice, J.R., Rosengren, G.F.: Plane-strain deformation near a crack tip in a power-law hardening material. J. Mech. Phys. Solids 16, 1–12 (1968) · Zbl 0166.20703 · doi:10.1016/0022-5096(68)90013-6
[5] Tvergaard, V., Hutchinson, J.W.: The relation between crack growth resistance and fracture process parameters in elasticplastic solids. J. Mech. Phys. Solids 40, 1377–1397 (1992) · Zbl 0775.73218 · doi:10.1016/0022-5096(92)90020-3
[6] Xia, L., Shih, C.F.: Ductile crack growth–I. A numerical study using computational cells with microstructurally-based length scales. J. Mech. Phys. Solids 43, 233–259 (1995) · Zbl 0879.73047 · doi:10.1016/0022-5096(94)00064-C
[7] Xia, L., Shih, C.F.: Ductile crack growth–II. Void nucleation and geometry effects on macroscopic fracture behaviour. J. Mech. Phys. Solids 43, 1953–1981 (1995) · Zbl 0919.73257 · doi:10.1016/0022-5096(95)00063-O
[8] Xia, L., Shih, C.F., Hutchinson, J.W.: A computational approach to ductile crack growth under large scale yielding conditions. J. Mech. Phys. Solids 43, 389–413 (1995) · Zbl 0875.73192 · doi:10.1016/0022-5096(94)00069-H
[9] Kolednik, O.: On the physical meaning of the J-{\(\delta\)}a-curves. Eng. Fract. Mech. 38, 403–412 (1991) · doi:10.1016/0013-7944(91)90092-F
[10] Turner, C.E.: A re-assessment of ductile tearing resistance, part I: the geometry dependence of J-R curves in fully plastic bending. Eighth European Conference on Fracture, Warley, UK: EMAS. 933–949 (1990)
[11] Turner, C.E.: A re-assessment of ductile tearing resistance, part II: energy dissipation rate and associate R-curves on normalized axes. Eighth European Conference on Fracture. Warley, UK: EMAS. 951–968 (1990)
[12] Turner, C.E., Kolednik, O.: A micro and macro approach to the energy dissipation rate model of stable ductile crack growth. Fatig. Fract. Engng. Mater. Struct. 17, 1089–1107 (1994) · doi:10.1111/j.1460-2695.1994.tb00837.x
[13] Kolednik, O., Turner, C.E.: Application of energy dissipation rate arguments to ductile instability. Fatig. Fract. Engng. Mater. Struct. 17, 1129–1145 (1994) · doi:10.1111/j.1460-2695.1994.tb01403.x
[14] Siegmund, T., Brocks, W.: A numerical study on the correlation between the work of separation and the dissipation rate in ductile fracture. Eng. Fract. Mech. 67, 139–154 (2000) · doi:10.1016/S0013-7944(00)00054-0
[15] Sumpter, J.D.G.: An alternative view of R curve testing. Eng. Fract. Mech. 64(2), 161–176 (1999) · doi:10.1016/S0013-7944(99)00074-0
[16] Gurtin, M.E., Podio-Guidugli, P.: Configurational forces and the basic laws for crack propagation. J. Mech. Phys. Solids 44, 905–927 (1996) · Zbl 1054.74508 · doi:10.1016/0022-5096(96)00014-2
[17] Nguyen, T.D., Govindjee, S., Klein, P.A., et al.: material force method for inelastic fracture mechanics. J. Mech. Phys. Solids 53, 91–121 (2005) · Zbl 1086.74036 · doi:10.1016/j.jmps.2004.06.010
[18] Simha, N.K., Fischer, F.D., Shan, G.X., et al.: J-integral and crack driving force in elastic-plastic materials J. Mech. Phys. Solids 56, 2876–2895 (2008) · Zbl 1171.74429 · doi:10.1016/j.jmps.2008.04.003
[19] Moran, B., Shih, C.F.: Crack tip and associated domain integrals from momentum and energy balance. Eng. Fract. Mech. 27, 615–642 (1987) · doi:10.1016/0013-7944(87)90155-X
[20] Lemaitre, J., Chaboche, J.L.: Mechanics of Solid Materials. Cambridge, UK: Cambridge University Press, 1990 · Zbl 0743.73002
[21] Tvergaard, V., Hutchinson, J.W.: The relation between crack growth resistance and fracture process parameters in elasticplastic solids. J. Mech. Phys. Solids 40(6), 1377–1397 (1992) · Zbl 0775.73218 · doi:10.1016/0022-5096(92)90020-3
[22] Xu, X.P., Needleman, A.: Numerical simulations of fast crack growth in brittle solids. J. Mech. Phys. Solids 42, 1397–1434 (1994) · Zbl 0825.73579 · doi:10.1016/0022-5096(94)90003-5
[23] Ortiz, M., Pandolfi, A.: Finite-deformation irreversible cohesive elements for three-dimensional crack-propagation analysis. Int. J. Numer. Methods Eng. 44(9), 1267–1282 (1999) · Zbl 0932.74067 · doi:10.1002/(SICI)1097-0207(19990330)44:9<1267::AID-NME486>3.0.CO;2-7
[24] Wei, Y.G., Zhao, M.H., Tang, S.: Characterization of the fracture work for ductile film undergoing the micro-scratch. Acta Mechanica Sinica 18, 494–505 (2002) · doi:10.1007/BF02486575
[25] Fagerström, M., Larsson, R.: Approaches to dynamic fracture modelling at finite deformations. J. Mech. Phys. Solids 56, 613–639 (2008) · Zbl 1171.74311 · doi:10.1016/j.jmps.2007.05.001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.