×

Upper bounds for Bernstein basis functions. (English) Zbl 1270.41008

Shiryaev, Albert N. (ed.) et al., Prokhorov and contemporary probability theory. In honor of Yuri V. Prokhorov on the occasion of his 80th birthday. Berlin: Springer (ISBN 978-3-642-33548-8/hbk; 978-3-642-33549-5/ebook). Springer Proceedings in Mathematics & Statistics 33, 293-301 (2013).
Summary: Starting with Markov bounds for binomial coefficients (for which a short proof is given), upper bounds are derived for Bernstein basis functions of approximation operators and their maximum. Some related inequalities used in approximation theory and those for concentration functions are discussed.
For the entire collection see [Zbl 1258.60006].

MSC:

41A36 Approximation by positive operators
41A44 Best constants in approximation theory
60E15 Inequalities; stochastic orderings
60G50 Sums of independent random variables; random walks
Full Text: DOI

References:

[1] Abel, U.; Gupta, V.; Mohapatra, RN, Local approximation by a variant of Bernstein-Durrmeyer operators, Nonlinear Anal., 68, 3372-3381 (2007) · Zbl 1175.41020 · doi:10.1016/j.na.2007.03.026
[2] Bastien, G.; Rogalski, M., Convexity, complete monotonicity and inequalities for zeta et gamma functions, for Baskakov operator functions and arithmetic functions (French), Canad. J. Math., 54, 5, 916-944 (2002) · Zbl 1027.11059 · doi:10.4153/CJM-2002-034-7
[3] Bernoulli, J., On the Law of Large Numbers (Russian) (1986), Nauka, Moscow: Translated from the Latin by Ya. V. Uspenskii. Translation edited and with a preface by A. A. Markov. Second edition edited and with a commentary by Yu. V. Prokhorov. With a preface by A. N. Kolmogorov. With comments by O. B. Sheinin and A. P. Yushkevich, Nauka, Moscow · Zbl 0646.01008
[4] Esseen, CG, On the concentration function of a sum of independent random variables, Z. Wahrscheinlichkeitstheorie Verw. Geb., 9, 290-308 (1968) · Zbl 0195.19303 · doi:10.1007/BF00531753
[5] Feller, W.: An Introduction to Probability Theory and Its Applications, vol. I, 3rd edn. Wiley, New York/London/Sydney (1968) · Zbl 0155.23101
[6] Götze, F.; Zaitsev, A. Yu., Estimates for the rapid decay of concentration functions of n-fold convolutions, J. Theor. Probab., 11, 3, 715-731 (1998) · Zbl 0936.60014 · doi:10.1023/A:1022654631571
[7] Guo, S., On the rate of convergence of the Durrmeyer operators for functions of bounded variation, J. Approx. Theory, 51, 183-192 (1987) · Zbl 0666.41017 · doi:10.1016/0021-9045(87)90033-5
[8] Gupta, V.; Lopez-Moreno, A.-J.; Latorre-Palacios, J.-M., On simultaneous approximation of the Bernstein Durrmeyer operators, Appl. Math. Comput., 213, 1, 112-120 (2009) · Zbl 1175.41018 · doi:10.1016/j.amc.2009.02.052
[9] Gupta, V.; Shervashidze, T.; Craciun, M., Rate of approximation for certain Durrmeyer operators, Georgian Math. J., 13, 2, 277-284 (2006) · Zbl 1117.41018
[10] Hengartner, W.; Theodorescu, R., Concentration Functions (1973), New York/ London: Academic Press, New York/ London · Zbl 0323.60015
[11] Korovkin, PP, Linear Operators and Approximation Theory (Russian) (1959), Moscow: Gos. Izd. Fis.-Mat. Lit, Moscow · Zbl 0094.10201
[12] Markov, A.A.: Calculus of Probabilities (Russian). Special high-school textbook, 4th Elaborated by the Author Posthumous Edition, Gos. Izd., Moscow (1924)
[13] Postnikova, L. P.; Yudin, A. A., On the concentration function (Russian), Teor. Verojatnost. i Primenen., 22, 2, 371-375 (1977) · Zbl 0379.60019
[14] Prokhorov, Yu.V.: Asymptotic behavior of the binomial distribution (Russian). Uspehi Matem. Nauk (N.S.) 8(3(55)), 135-142 (1953) · Zbl 0051.10302
[15] Robbins, HE, A remark on Stirling’s theorem, Am. Math. Mon., 62, 26-29 (1955) · Zbl 0068.05404 · doi:10.2307/2308012
[16] Rogozin, B. A., An estimate for concentration functions (Russian), Teor. Verojatnost. i Primenen., 6, 106-108 (1961)
[17] Zeng, X.-M., Bounds for Bernstein basis functions and Meyer-König and Zeller functions, J. Math. Anal. Appl., 219, 363-376 (1998) · Zbl 0909.41015
[18] Zeng, X.-M.; Zhao, J.-N., Exact bounds for some basis functions of approximation operators, J. Inequal. Appl., 6, 563-575 (2001) · Zbl 0991.41016
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.