×

Weak Fenchel and weak Fenchel-Lagrange conjugate duality for nonconvex scalar optimization problems. (English) Zbl 1269.90084

Summary: In this work, by using weak conjugate maps given in [A. Y. Azimov and R. N. Kasimov, Int. J. Appl. Math. 1, No. 2, 171–192 (1999; Zbl 1171.90514)], the weak Fenchel conjugate dual problem, \((D_F^w)\), and the weak Fenchel Lagrange conjugate dual problem \((D_{FL}^w)\) are constructed. Necessary and sufficient conditions for strong duality for the \((D_F^w)\), \((D_{FL}^w)\) and primal problem are given. Furthermore, relations among the optimal objective values of dual problems constructed by using augmented Lagrangian in [loc. cit], the \((D_F^w)\), \((D_{FL}^w)\) dual problems and primal problem are examined. Lastly, necessary and sufficient optimality conditions for the primal and the dual problems \((D_F^w)\) and \((D_{FL}^w)\) are established.

MSC:

90C26 Nonconvex programming, global optimization
90C46 Optimality conditions and duality in mathematical programming
49J52 Nonsmooth analysis

Citations:

Zbl 1171.90514
Full Text: DOI

References:

[1] Azimov A.Y., Gasimov R.N.: On weak conjugacy, weak subdifferentials and duality with zero gap in nonconvex optimization. Int. J. Appl. Math. 1, 171–192 (1999) · Zbl 1171.90514
[2] Fenchel W.: On conjugate convex functions. Can. J. Math. 1, 73–77 (1949) · Zbl 0038.20902 · doi:10.4153/CJM-1949-007-x
[3] Moreau J.J.: Convexity and Duality in Functional Analysis and Optimization. Academic Press, New York (1966)
[4] Kuhn, H.W., Tucker, A.W.: Nonlinear programming. In: Proceedings of the 2nd Berkeley Symposium on Mathematical Statistics and Probability, University of California Press, Berkeley (1951) · Zbl 0044.05903
[5] Rockafellar R.T.: Extension of Fenchel’s duality theorem for convex functions. Duke Math. J. 33, 81–90 (1966) · Zbl 0138.09301 · doi:10.1215/S0012-7094-66-03312-6
[6] Rockafellar R.T.: Augmented Lagrange multiplyer functions and duality in nonconvex programming. SIAM J. Control Optim. 12, 1–19 (1974) · Zbl 0286.93006 · doi:10.1137/0312001
[7] Balder E.J.: An extension of duality-stability relations to nonconvex optimization problems. SIAM J. Control Optim. 15, 329–343 (1977) · Zbl 0366.90103 · doi:10.1137/0315022
[8] Hanson M.A.: On sufficiency of the Kuhn-Tucker conditions. J. Math. Anal. Appl. 80, 545–550 (1981) · Zbl 0463.90080 · doi:10.1016/0022-247X(81)90123-2
[9] Jeyakumar V., Wolkowicz H.: Zero duality gaps in infinite-dimensional programming. J. Optim. Theory Appl. 67, 87–108 (1990) · Zbl 0687.90077 · doi:10.1007/BF00939737
[10] Rockafellar R.T.: Lagrange multipliers and optimality. SIAM Rev. 35, 183–238 (1993) · Zbl 0779.49024 · doi:10.1137/1035044
[11] Tnach P.T.: A nonconvex duality with zero gap and applications. SIAM J. Optim. 4, 44–64 (1994) · Zbl 0999.49503 · doi:10.1137/0804002
[12] Khanh P.Q.: Invex-convexlike functions and duality. J. Optim. Theory Appl. 87, 141–165 (1995) · Zbl 0843.90109 · doi:10.1007/BF02192045
[13] Boţ R.I., Kassay G., Wanka G.: Strong duality for generalized convex optimization problems. J. Optim. Theory Appl. 127, 45–70 (2005) · Zbl 1158.90420 · doi:10.1007/s10957-005-6392-5
[14] Azimov A.Y., Gasimov R.N.: Stability and duality of nonconvex problems via augmented Lagrangian. Cybern. Syst. Anal. 38, 412–421 (2002) · Zbl 1033.90083 · doi:10.1023/A:1020316811823
[15] Pardalos P.M., Rassias T.M., Khan A.A.: Nonlinear Analysis and Variational Problems. Springer, New York (2010) · Zbl 1178.49001
[16] Martínez-Legaz J.E., Sosa W.: Duality for equilibrium problems. J. Global Optim. 35(2), 311–319 (2006) · Zbl 1106.90074 · doi:10.1007/s10898-005-3840-6
[17] Giannessi F.: On the theory of Lagrangian duality. Optim. Lett. 1(1), 9–20 (2007) · Zbl 1149.90145 · doi:10.1007/s11590-006-0013-6
[18] Li S.J., Zhao P.: A method of duality for a mixed vector equilibrium problem. Optim. Lett. 4(1), 85–96 (2010) · Zbl 1189.90189 · doi:10.1007/s11590-009-0141-x
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.