×

Effective spring stiffness for non-interacting penny-shaped cracks at an interface between two dissimilar, isotropic, linearly elastic materials. (English) Zbl 1269.74196

Summary: A quasi-static approximation has been widely used to model ultrasonic wave interactions at imperfect interfaces between two linearly elastic materials. To simulate the reduction of static stiffness of the overall structure due to compromised interfaces (micro-cracks or micro-disbonds), the compliance of an imperfect interface to a loading is represented by continuous, uniform distributions of linearly elastic interfacial springs. In this work, a representation by normal and transverse effective spring stiffnesses of an array of non-interacting penny-shaped cracks at the interface between two dissimilar, isotropic, linearly elastic materials is obtained based on classical fracture mechanics. The results obtained are useful in estimating the disbonded area, which is critical in assessing the bond integrity and estimating the remaining life. Special care is taken to avoid crack surface interpenetration for transverse loading, and the valid loading range is obtained to assure negligibility of crack surface interpenetration for all possible ranges of isotropic, linearly elastic material combinations. For linear ultrasound applications, it is shown that the expression obtained for transverse springs can be used for most isotropic, linearly elastic material combinations, if the initial maximum crack opening displacement is more than 10\(^{-5}\) of the crack radius. The obtained expressions are applied to estimate the accuracy of existing approximate models based on the analysis of penny-shaped cracks in a homogeneous material, rules of mixture, and Hertzian-based effective moduli. It is shown that for most practical material combinations the error is below 5%.

MSC:

74R10 Brittle fracture
74B05 Classical linear elasticity
Full Text: DOI

References:

[1] Baik, J., J Nondestr Eval 4 pp 177– (1984) · doi:10.1007/BF00566223
[2] Margetan, FJ, J Nondestr Eval 7 pp 131– (1988) · doi:10.1007/BF00565998
[3] Angel, YC, J Appl Mech Trans ASME 52 pp 33– (1985) · Zbl 0587.73036 · doi:10.1115/1.3169023
[4] Nakagawa, S., J Acoust Soc Am 115 pp 2761– (2004) · doi:10.1121/1.1739483
[5] Kim, J., J Mech Phys Solids 52 pp 1911– (2004) · doi:10.1016/j.jmps.2004.01.006
[6] Palmer, DD, J Nondestr Eval 7 pp 167– (1988) · doi:10.1007/BF00566000
[7] Thompson, RB, J Adhes Sci Technol 5 pp 583– (1991) · doi:10.1163/156856191X00503
[8] Rokhlin, SI, J Adhes Sci Technol 18 pp 327– (2004) · doi:10.1163/156856104773635463
[9] Pecorari, C., J Acoust Soc Am 107 pp 2454– (2000) · doi:10.1121/1.428632
[10] Lavrentyev, AI, J Acoust Soc Am 103 pp 657– (1998) · doi:10.1121/1.423235
[11] Baltazar, A., J Acoust Soc Am 114 pp 1424– (2003) · doi:10.1121/1.1600723
[12] Wang, H., Ultrasonics 44 pp E1349– (2006) · doi:10.1016/j.ultras.2006.05.050
[13] Bostrom, A., Q J Mech Appl Math 62 pp 39– (2008) · Zbl 1156.74339 · doi:10.1093/qjmam/hbn025
[14] Johnson, KL Contact mechanics. Cambridge [Cambridgeshire]; New York : Cambridge University Press, 1987 , Chapter 4.
[15] Lavrentyev, AI, J Appl Phys 76 pp 4643– (1994) · doi:10.1063/1.357301
[16] Willis, JR, Q J Mech Appl Math 25 pp 367– (1972) · Zbl 0243.73056 · doi:10.1093/qjmam/25.3.367
[17] Mossakovskii, VI, Prikl Mat Mekh 28 pp 1061– (1964)
[18] Tada, H., The stress analysis of cracks handbook (2000) · doi:10.1115/1.801535
[19] Dundurs, J., J Appl Mech 36 pp 650– (1969) · doi:10.1115/1.3564739
[20] Fabrikant, VI, Acta Mech 67 pp 39– (1987) · Zbl 0612.73106 · doi:10.1007/BF01182121
[21] Kachanov, M., Int J Fract Mech 37 pp R63– (1988)
[22] Lekesiz, H., In print in Int. J. Mech. Mater (2010)
[23] Suga, T., J Compos Mater 22 pp 917– (1988) · doi:10.1177/002199838802201002
[24] Comninou, M., J Appl Mech Trans ASME 44 pp 631– (1977) · Zbl 0369.73092 · doi:10.1115/1.3424148
[25] Comninou, M., J Appl Mech Trans ASME 45 pp 287– (1978) · Zbl 0386.73084 · doi:10.1115/1.3424289
[26] Comninou, M., J Appl Mech Trans ASME 46 pp 345– (1979) · Zbl 0413.73090 · doi:10.1115/1.3424553
[27] Rice, JR, J Appl Mech Trans ASME 55 pp 98– (1988) · doi:10.1115/1.3173668
[28] Hills, DA, Int J Mech Sci 35 pp 27– (1993) · Zbl 0825.73549 · doi:10.1016/0020-7403(93)90062-Y
[29] Graciani, E., Int J Fract 143 pp 287– (2007) · Zbl 1197.74102 · doi:10.1007/s10704-007-9066-5
[30] Gorbatikh, L., Int J Fract 127 pp L141– (2004) · Zbl 1187.74175 · doi:10.1023/B:FRAC.0000035088.52007.02
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.