×

Dynamics and global stability of beam-based electrostatic microactuators. (English) Zbl 1269.74113

Summary: We investigate the dynamics and global stability of a beam-based electrostatic microactuator, which is modeled as a first-order approximation of a reduced-order model (ROM) derived using the differential quadrature method (DQM). We show that the ROM dynamics is qualitatively similar to that of a higher-order approximation. We simulate the occurrence of dynamic pull-in for excitations near the first primary resonance using the finite difference method (FDM) and long-time integration. Limit-cycle solutions are obtained using the FDM, the generated frequency- and force-response curves exhibit cyclic-fold, saddle-node, and period-doubling bifurcations. We verify that symmetry breaking is not likely to occur because the orbit is already asymmetric. We identify the basin of attraction of bounded motions using various approximation levels. The simulations reveal that the erosion of the basin of attraction depends heavily on the amplitude and frequency of the AC voltage. We show that smoothness of the boundary of the basin of attraction can be lost and replaced by fractal tongues, which dramatically increase the sensitivity of the microbeam to initial conditions. According to these simulations, the locations of the two fixed points are likely to be disturbed.

MSC:

74H55 Stability of dynamical problems in solid mechanics
74H60 Dynamical bifurcation of solutions to dynamical problems in solid mechanics
74K10 Rods (beams, columns, shafts, arches, rings, etc.)
74F15 Electromagnetic effects in solid mechanics
Full Text: DOI

References:

[1] Abdel-Rahman, E.M., Journal of Computational and Theoretical Nanoscience 1 pp 1– (2005)
[2] Bochobza-Degani, O., Journal of Microelectromechnical Systems 11 pp 612– (2002) · doi:10.1109/JMEMS.2002.803280
[3] De, S.K., Journal of Microelectromechnical Systems 13 pp 737– (2004) · doi:10.1109/JMEMS.2004.835773
[4] De, S.K., Journal of Microelectromechnical Systems 15 pp 355– (2006) · doi:10.1109/JMEMS.2006.872227
[5] Elata, D., Journal of Microelectromechnical Systems 15 pp 131– (2006) · doi:10.1109/JMEMS.2005.864148
[6] Fargas-Marquès, A., Technical Report IOC-DT-P-2005-18
[7] Fargas-Marquès, A., Proceedings of the IEEE Sensors 05
[8] Gui, C., Journal of Micromechanics and Microengineering 7 pp 122– (1998)
[9] Gupta, R.K., Technical Digest Solid State Sensor and Actuator Workshop
[10] Lenci, S., Journal of Micromechanics and Microengineering 16 pp 390– (2006) · doi:10.1088/0960-1317/16/2/025
[11] Li, G., Technical Proceedings of the International Conference on Modeling and Simulation of Microsystems
[12] Liqin, L., Journal of Vibration and Control 12 pp 57– (2005) · Zbl 1182.74126 · doi:10.1177/1077546306061127
[13] Liu, S., Journal of Micromechanics and Microengineering 14 pp 1064– (2004) · doi:10.1088/0960-1317/14/7/029
[14] Luo, A.C.J., Journal of Vibration and Acoustics 126 pp 77– (2004) · doi:10.1115/1.1597211
[15] Moon, F.C., Chaotic and Fractal Dynamics: An Introduction for Applied Scientists and Engineers (1992) · doi:10.1002/9783527617500
[16] Najar, F., Journal of Micromechanics and Microengineering 16 pp 2449– (2006) · doi:10.1088/0960-1317/16/11/028
[17] Najar, F., Journal of Micromechanics and Microengineering 15 pp 419– (2005) · doi:10.1088/0960-1317/15/3/001
[18] Najar, F., Journal of Vibration and Control (2009)
[19] Nathanson, H.C., IEEE Transactions on Electron Devices 14 pp 117– (1967) · doi:10.1109/T-ED.1967.15912
[20] Nayfeh, A.H., Applied Nonlinear Dynamics (1995) · Zbl 0848.34001 · doi:10.1002/9783527617548
[21] Nayfeh, A.H., Nonlinear Oscillations (1979)
[22] Nayfeh, A.H., Journal of Micromechanics and Microengineering 15 pp 1840– (2005) · doi:10.1088/0960-1317/15/10/008
[23] Nayfeh, A.H., Nonlinear Dynamics 48 pp 153– (2007) · doi:10.1007/s11071-006-9079-z
[24] Nielson, G.N., Journal of Microelectromechnical Systems 15 pp 811– (2006) · doi:10.1109/JMEMS.2006.879121
[25] Rega, G., Nonlinear Analysis 63 pp 902– (2005) · Zbl 1153.70307 · doi:10.1016/j.na.2005.01.084
[26] Rhoads, J.F., Journal of Micromechanics and Microengineering 16 pp 890– (2006) · doi:10.1088/0960-1317/16/5/003
[27] Seeger, J.I., Proceedings of the 12th International Conference on Solid-State Sensors, Actuators and Microsystems (Transducers 03)
[28] Soliman, M.S., Physical Review A 45 pp 3425– (1992) · doi:10.1103/PhysRevA.45.3425
[29] Tadayon, M.A., Internatonal MEMS Conference, Journal of Physics: Conference Series 34 pp 961– (2006) · doi:10.1088/1742-6596/34/1/159
[30] Veijola, T., Proceedings of the International Microwave Symposium · Zbl 1374.94908
[31] Wang, Y.C., IEEE Transactions on Circuits and Systems-I: Fundamental Theory and Applications 45 pp 1013– (1998) · doi:10.1109/81.728856
[32] Younis, M.I., Investigation of the mechanical behavior of microbeam-based MEMS devices,” MSc Thesis (2001)
[33] Younis, M.I., Nonlinear Dynamics 31 pp 91– (2003) · Zbl 1047.74027 · doi:10.1023/A:1022103118330
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.