×

Approximation of stochastic partial differential equations by a kernel-based collocation method. (English) Zbl 1269.65006

Let \(\mathcal{H}\) be a Hilbert space of functions defined on an open bounded domain \(\mathcal{D}\) in \(\mathbb{R}^{d}\). The authors consider the following stochastic partial differential equation (SPDE) of parabolic type: \[ \begin{cases} dU_{t}=\mathcal{A}U_{t}dt+\sigma dW_{t}\;\text{in }\mathcal{D},\;0<t<T,\\ BU_{t}=0\;\text{on\;}\partial\mathcal{D},\;U_{0}=u_{0}, \end{cases} \] where \(\mathcal{A}\) is a linear elliptic operator in \(\mathcal{H}\), \(B\) is a boundary operator for Dirichlet or Neumann boundary conditions, \(u_{0} \in\mathcal{H}\), \(\sigma>0\), \(W\) is a Wiener process in \(\mathcal{H}\) with mean zero and spatial covariance function \(R\) given by \(\mathbb{E} (W(t,x)W(t,y))=\min\{t,s\}R(x,y)\), \(x,y\in\mathcal{D}\).
Applying the implicit Euler scheme \[ U_{t_{j}}-U_{t_{j-1}}=AU_{t_{j}}\delta t+\sigma\delta W_{j}, \] \(0=t_{0}<t_{1}<\dots<t_{n}=T\), \(\delta t_{j}:=t_{j}-t_{j-1}\), \(\delta W_{j}=W_{t_{j}}-W_{t_{j-1}}\), they become an elliptic SPDE of the form \[ Pu=f+\xi\;\text{in }\mathcal{D},\;Bu=0\;\text{on }\partial\mathcal{D},\; \] where \(P:=I-\delta t\mathcal{A}\), \(f:=U_{t_{j-1}}\), \(\xi:=\sigma\delta W_{j}\).
For solving the elliptic SPDE at each time step, the authors propose a kernel-based collocation method using the covariance function \(R\) for simulating a finite collection of collocation points.

MSC:

65C30 Numerical solutions to stochastic differential and integral equations
46E22 Hilbert spaces with reproducing kernels (= (proper) functional Hilbert spaces, including de Branges-Rovnyak and other structured spaces)
60G15 Gaussian processes
60H15 Stochastic partial differential equations (aspects of stochastic analysis)
65M70 Spectral, collocation and related methods for initial value and initial-boundary value problems involving PDEs
60H35 Computational methods for stochastic equations (aspects of stochastic analysis)
35R60 PDEs with randomness, stochastic partial differential equations

References:

[1] Adams R. A., Pure and Applied Mathematics (Amsterdam) 140 (2003)
[2] DOI: 10.1137/100786356 · Zbl 1226.65004 · doi:10.1137/100786356
[3] DOI: 10.1007/978-1-4419-9096-9 · doi:10.1007/978-1-4419-9096-9
[4] Buhmann M. D., Cambridge Monographs on Applied and Computational Mathematics 12 (2003)
[5] Chow P. L., Chapman & Hall/CRC Applied Mathematics and Nonlinear Science Series (2007)
[6] Da Prato G., Encyclopedia of Mathematics and its Applications 44 (1992)
[7] DOI: 10.1016/S0045-7825(01)00237-7 · Zbl 1075.65006 · doi:10.1016/S0045-7825(01)00237-7
[8] Fasshauer G. E., Interdisciplinary Mathematical Sciences 6 (2007)
[9] Fasshauer G. E., Dolomite Res. Notes Approx. 4 pp 21– (2011) · doi:10.1186/1756-0500-4-21
[10] DOI: 10.1007/s00211-011-0391-2 · Zbl 1242.46039 · doi:10.1007/s00211-011-0391-2
[11] Fasshauer G. E., Adv. Comput. Math (2011)
[12] Hon Y. C., The kernel-based method of lines for the heat equation
[13] Janson S., Cambridge Tracts in Mathematics 129 (1997)
[14] DOI: 10.1214/09-AOP500 · Zbl 1220.35202 · doi:10.1214/09-AOP500
[15] Karatzas I., Graduate Texts in Mathematics 113 (1991)
[16] DOI: 10.1090/S0002-9947-01-02852-5 · Zbl 0973.60036 · doi:10.1090/S0002-9947-01-02852-5
[17] DOI: 10.1007/978-3-540-74496-2_34 · doi:10.1007/978-3-540-74496-2_34
[18] DOI: 10.1137/060663660 · Zbl 1176.65137 · doi:10.1137/060663660
[19] Rozovskii B. L., Stochastic Evolution Systems: Linear Theory and Applications to Nonlinear Filtering, Mathematics and its Applications (Soviet Series) 35 (1990)
[20] Scheuerer , M. , Schaback , R. and Schlather , M. ” Interpolation of spatial data – a stochastic or a deterministic problem? ” . preprint (2010). Available at http://num.math.uni-goettingen.de/schaback/research/papers/IoSD.pdf. · Zbl 1426.62284
[21] Wendland H., Cambridge Monographs on Applied and Computational Mathematics 17 (2005)
[22] Ye Q., Tech. Rep., Illinois Institute of Technology (2010)
[23] Ye , Q. 2012 . ” Analyzing reproducing kernel approximation methods via a Green function approach ” . Illinois Institute of Technology . Ph.D. thesis
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.