×

Generalized Maupertuis’ principle with applications. (English) Zbl 1269.37030

A method to transform a mechanical Lagrangian system into a geodesic system on some energy hypersurface with higher energy is known as Maupertuis’ principle. The author considers some generalized Maupertuis’ principle in the case of Tonelli Hamiltonians. The author proves that the Mañé supercritical potential is equivalent to the corresponding minimal action with respect to an associated Jacobi-Finsler metric. In this way, under weaker conditions, one obtains some applications of the relations between the integrability of the system and the regularity property of Mather’s \(\alpha\)-function.

MSC:

37J40 Perturbations of finite-dimensional Hamiltonian systems, normal forms, small divisors, KAM theory, Arnol’d diffusion
37J30 Obstructions to integrability for finite-dimensional Hamiltonian and Lagrangian systems (nonintegrability criteria)
37J50 Action-minimizing orbits and measures (MSC2010)
70H20 Hamilton-Jacobi equations in mechanics
70H25 Hamilton’s principle
37N05 Dynamical systems in classical and celestial mechanics
Full Text: DOI

References:

[1] Mather, J. N.: Action minimizing invariant measures for positive definite Lagrangian systems. Math. Z., 207, 169–207 (1991) · Zbl 0696.58027 · doi:10.1007/BF02571383
[2] Mather, J. N.: Variational construction of connecting orbits. Ann. Inst. Fourier (Grenoble), 43, 1349–1386 (1993) · Zbl 0803.58019 · doi:10.5802/aif.1377
[3] Fathi, A., Siconolfi, A.: PDE aspects of Aubry-Mather theory for quasiconvex Hamiltonians. Calc. Var. Partial Differential Equations, 22, 185–228 (2005) · Zbl 1065.35092 · doi:10.1007/s00526-004-0271-z
[4] Arnold, V. I.: Mathematical Methods of Classical Mechanics, 2nd ed., Graduate Texts in Mathematics, 60, Springer-Verlag, New York, 1989
[5] Contreras, G., Iturriaga, R., Paternain, G. P., et al.: Lagrangian graphs, minimizing measures and Mañé’s critical values. Geom. Funct. Anal., 8, 788–809 (1998) · Zbl 0920.58015 · doi:10.1007/s000390050074
[6] Iturriaga, R., Sánchez-Morgado, H.: Finsler metrics and action potentials. Proc. Amer. Math. Soc., 128, 3311–3316 (2000) · Zbl 0947.37032 · doi:10.1090/S0002-9939-00-05710-5
[7] Evans, L. C., Gomes, D.: Effective Hamiltonians and averaging for Hamiltonian dynamics. I. Arch. Ration. Mech. Anal., 157, 1–33 (2001) · Zbl 0986.37056 · doi:10.1007/PL00004236
[8] Fathi, A.: Weak KAM Theorem in Lagragian Dynamics, to be published by Cambridge University Press
[9] Fathi, A., Siconolfi, A.: Existence of C 1 critical subsolutions of the Hamilton-Jacobi equation. Invent. Math., 155, 363–388 (2004) · Zbl 1061.58008 · doi:10.1007/s00222-003-0323-6
[10] Hiriart-Urruty, J.-B., Lemaréchal, C.: Fundamentals of Convex Analysis, Grundlehren Text Editions, Springer-Verlag, Berlin, 2001
[11] Burago, D., Ivanov, S., Kleiner, B.: On the structure of the stable norm of periodic metrics. Math. Res. Lett., 4, 791–808 (1997) · Zbl 0898.53026 · doi:10.4310/MRL.1997.v4.n6.a2
[12] Lions, P. L., Papanicolaou, G., Varadhan, S. R. S.: Homogenization of Hamilton-Jacobi equations. Unpublished manuscript, 1988
[13] Cheng, W.: The integrability of positively definite Lagrangian systems via variational criterion: mechanical systems. J. Differential Equations, 249, 1664–1673 (2010) · Zbl 1207.37044 · doi:10.1016/j.jde.2010.06.016
[14] Cheng, W.: On the Mather’s {\(\alpha\)}-function of mechanical systems. Proc. Amer. Math. Soc., 139, 2143–2149 (2011) · Zbl 1233.37035 · doi:10.1090/S0002-9939-2010-10643-3
[15] Bangert, V.: Minimal geodesics. Ergodic Theory Dynam. Systems, 10, 263–286 (1990) · Zbl 0676.53055
[16] Burago, D., Ivanov, S.: Riemannian tori without conjugate points are flat. Geom. Funct. Anal., 4, 259–269 (1994) · Zbl 0808.53038 · doi:10.1007/BF01896241
[17] Mañé, R.: Generic properties and problems of minimizing measures of Lagrangian systems. Nonlinearity, 9, 273–310 (1996) · Zbl 0886.58037 · doi:10.1088/0951-7715/9/2/002
[18] Mañé, R.: Lagrangian flows: the dynamics of globally minimizing orbits. Bol. Soc. Brasil. Mat. (N.S.), 28, 141–153 (1997) · Zbl 0892.58064 · doi:10.1007/BF01233389
[19] Mather, J. N.: Examples of Aubry sets. Ergodic Theory Dynam. Systems, 24, 1667–1723 (2004) · Zbl 1090.37047 · doi:10.1017/S0143385704000446
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.