×

Hausdorff dimension of quasi-cirles of polygonal mappings and its applications. (English) Zbl 1269.30028

Summary: We show that the Hausdorff dimension of quasi-circles of polygonal mappings is one. Furthermore, we apply this result to the theory of extremal quasiconformal mappings. Let \([\mu ]\) be a point in the universal Teichmüller space such that the Hausdorff dimension of \(f _{\mu } (\partial; \Delta)\) is bigger than one. We show that for every \(k _{n } \in (0, 1)\) and polygonal differentials \(\varphi _{n }, n = 1, 2, \dots \), the sequence \( \{ [k_n \frac{{\overline {\varphi _n } }} {{|\varphi _n |}}]\} \) cannot converge to \([\mu ]\) under the Teichmüller metric.

MSC:

30C62 Quasiconformal mappings in the complex plane
30C75 Extremal problems for conformal and quasiconformal mappings, other methods
30F60 Teichmüller theory for Riemann surfaces
28A78 Hausdorff and packing measures
Full Text: DOI

References:

[1] Ahlfors L V. Lecture on Quasiconformal Mappings. Princeton-New Jersey: D Van Nostrand, 1966 · Zbl 0138.06002
[2] Astala K. Area distortion of quasiconformal mappings. Acta Math, 1994, 173: 37-60 · Zbl 0815.30015 · doi:10.1007/BF02392568
[3] Bishop C J. Divergence groups have the Bowen property. Ann of Math, 2001, 154: 205-217 · Zbl 0999.37030 · doi:10.2307/3062115
[4] Bowen R. Hausdorff dimension of quasicircles. Publ Math IHES, 1979, 1250: 11-25 · Zbl 0439.30032
[5] Cui G Z, Qi Y. Local boundary dilatation of quasiconformal maps in the disk. Proc Amer Math Soc, 2001, 130: 1383-1389 · Zbl 0995.30029 · doi:10.1090/S0002-9939-01-06353-5
[6] Gardiner F P. Teichmüller Theory and Quadratic Differentials. New York: John Wiley and Sons, 1987 · Zbl 0629.30002
[7] Gardiner F P, Lakic N. Quasiconformal Teichmüller Theory. Math Surveys Monogr, 76. Providence, RI: Amer Math Soc, 2000 · Zbl 0949.30002
[8] Graczyk J, Jones P. Dimension of the boundary of quasiconformal Siegel disk. Invent Math, 2002, 148: 465-493 · Zbl 1079.37507 · doi:10.1007/s002220100198
[9] Huo S J, Wu S J. Hausdorff dimensions of quasi-lines varying in the universal Teichmüller space. Submitted · Zbl 1285.30005
[10] Lakic N. The Strebel points. Contemp Math, 1997, 211: 417-431 · Zbl 0957.30014 · doi:10.1090/conm/211/02832
[11] Lehto O. Univalent Functions and Teichmüller Spaces. New York: Springer-Verlag, 1987 · Zbl 0606.30001 · doi:10.1007/978-1-4613-8652-0
[12] Ruelle D. Repellors for real analytic maps. Ergod Th Dynam Syst, 1982, 2: 99-107 · Zbl 0506.58024 · doi:10.1017/S0143385700009603
[13] Reich, E.; Strebel, K., Extremal quasiconformal mappings with prescribed boundary values, 375-391 (1974), New York · Zbl 0318.30022
[14] Smirnov S. Dimension of quasicircles. Acta Math, 2010, 205: 189-197 · Zbl 1211.30037 · doi:10.1007/s11511-010-0053-8
[15] Shen Y L. A note on hamilton sequences for extremal Beltrami coefficients. Proc Amer Math Soc, 2000, 129: 105-109 · Zbl 0964.30025
[16] Strebel K. Extremal Quasiconformal Mappings. Results Math, 1986, 10: 168-210 · Zbl 0628.30029 · doi:10.1007/BF03322374
[17] Sullivan D. Discrete of conformal groups and measurable dynamics. Bull Amer Math Soc, 1982, 6: 57-73 · Zbl 0489.58027 · doi:10.1090/S0273-0979-1982-14966-7
[18] Sullivan D. Hausdorff measures old and new, and the limit sets of geometrically finite Kleinian groups. Acta Math, 1984, 153: 259-277 · Zbl 0566.58022 · doi:10.1007/BF02392379
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.