×

Mixed hyperbolic/trigonometric spaces for design. (English) Zbl 1268.65025

Summary: We investigate the class of five-dimensional null spaces of linear differential operators with constant coefficients and odd characteristic polynomials. One of the advantages of this class is that it permits to mix trigonometric and hyperbolic functions within the same space, and we will more specially focus on this interesting blending. Whenever necessary we determine the critical lengths for design. This yields the largest possible intervals on which existence of Bernstein bases is guaranteed, such bases being then automatically the optimal normalised totally positive bases. This also enables us to show the interest of this class of spaces for geometric design.

MSC:

65D17 Computer-aided design (modeling of curves and surfaces)
Full Text: DOI

References:

[1] Carnicer, J.-M.; Peña, J.-M., Shape preserving representations and optimality of the Bernstein basis, Adv. Comput. Math., 1, 173-196 (1993) · Zbl 0832.41013
[2] Mazure, M.-L., Blossoms and optimal bases, Adv. Comput. Math., 20, 177-203 (2004) · Zbl 1042.65016
[3] Carnicer, J.-M.; Peña, J.-M., Totally positive bases for shape preserving curve design and optimality of \(B\)-splines, Comput. Aided Geom. Design, 11, 633-654 (1994) · Zbl 0827.65018
[4] Mazure, M.-L., Chebyshev spaces and Bernstein bases, Constr. Approx., 22, 347-363 (2005) · Zbl 1116.41006
[5] Pottmann, H., The geometry of Tchebycheffian splines, Comput. Aided Geom. Design, 10, 181-210 (1993) · Zbl 0777.41016
[6] Schweikert, D. G., An interpolation curve using a spline in tension, J. Math. Phys., 45, 312-317 (1966) · Zbl 0146.14102
[7] Koch, P. E.; Lyche, T., Exponential \(B\)-splines in tension, (Chui, C. K.; Schumaker, L. L.; Ward, J. D., Approximation Theory VI (1989), Acad. Press: Acad. Press NY), 361-364 · Zbl 0754.41006
[8] Koch, P. E.; Lyche, T., Construction of exponential tension \(B\)-splines of arbitrary order, (Laurent, P.-J.; Le Méhauté, A.; Schumaker, L. L., Curves and Surfaces (1991), Acad. Press: Acad. Press Boston), 255-258 · Zbl 0736.41013
[9] Marusic, M.; Rogina, M., Sharp error-bounds for interpolating splines in tension, J. Comput. Appl. Math., 61, 205-223 (1995) · Zbl 0848.41007
[10] Bosner, T.; Rogina, M., Non-uniform exponential tension splines, Numer. Algorithms, 46, 265-294 (2007) · Zbl 1130.65019
[11] Li, Y.; Wang, G., Two kinds of \(B\)-basis of the algebraic hyperbolic space, J. Zhejiang Univ. Sci., 6A, 750-759 (2005)
[12] Lu, Y.; Wang, G.; Yang, X., Uniform hyperbolic polynomial \(B\)-spline curves, Comput. Aided Geom. Design, 19, 379-393 (2002)
[13] Zhang, J.; Krause, F.-L.; Zhang, H., Unifying \(C\)-curves and \(H\)-curves by extending the calculation to complex numbers, Comput. Aided Geom. Design, 22, 865-883 (2005) · Zbl 1087.65516
[14] Pottmann, H.; Wagner, M. G., Helix splines as an example of affine Tchebycheffian splines, Adv. Comput. Math., 2, 123-142 (1994) · Zbl 0832.65008
[15] Mazure, M.-L., Chebyshev-Bernstein bases, Comput. Aided Geom. Design, 16, 640-669 (1999) · Zbl 0997.65022
[16] Costantini, P.; Lyche, T.; Manni, C., On a class of weak Tchebycheff systems, Numer. Math., 101, 333-354 (2005) · Zbl 1085.41002
[17] Mainar, E.; Peña, J.-M., A general class of Bernstein-like bases, Comput. Math. Appl., 53, 1686-1703 (2007) · Zbl 1152.65408
[18] Chen, Q.; Wang, G., A class of Bézier-like curves, Comput. Aided Geom. Design, 20, 29-39 (2003) · Zbl 1069.65514
[19] Mainar, E.; Peña, J.-M.; Sanchez-Reyes, J., Shape preserving alternatives to the rational Bézier model, Comput. Aided Geom. Design, 18, 37-60 (2001) · Zbl 0972.68157
[20] Zhang, J. W., \(C\)-curves: an extension of cubic curves, Comput. Aided Geom. Design, 13, 199-217 (1996) · Zbl 0900.68405
[21] Mainar, E.; Peña, J.-M., A basis of C-Bézier splines with optimal properties, Comput. Aided Geom. Design, 19, 291-295 (2002) · Zbl 0995.68135
[22] Wang, G.; Li, Y., Optimal properties of the uniform algebraic trigonometric \(B\)-splines, Comput. Aided Geom. Design, 13, 226-238 (2006) · Zbl 1082.41009
[23] Mazure, M.-L., On a general new class of quasi-Chebyshevian splines, Numer. Algorithms, 58, 399-438 (2011) · Zbl 1232.41008
[24] Carnicer, J.-M.; Mainar, E.; Peña, J.-M., Critical length for design purposes and extended Chebyshev spaces, Constr. Approx., 20, 55-71 (2004) · Zbl 1061.41004
[25] Mazure, M.-L., Chebyshev splines beyond total positivity, Adv. Comput. Math., 14, 129-156 (2001) · Zbl 0971.41006
[26] Mainar, E.; Peña, J.-M., Optimal bases for a class of mixed spaces and their associated spline spaces, Comput. Math. Appl., 59, 1509-1523 (2010) · Zbl 1189.41005
[27] Carnicer, J.-M.; Mainar, E.; Peña, J.-M., Representing circles with five control points, Comput. Aided Geom. Design, 20, 501-511 (2003) · Zbl 1069.65509
[28] Goodman, T. N.T., Total positivity and the shape of curves, (Gasca, M.; Micchelli, C. A., Total Positivity and its Applications (1996), Kluwer Academic Pub.), 157-186 · Zbl 0894.68159
[29] Pottmann, H., A geometric approach to variation diminishing free-form curve schemes, (Peña, J. M., Shape Preserving Representations in Computer-Aided Geometric Design (1999), Nova Sc. Pub.), 119-131 · Zbl 1005.68163
[30] Karlin, S. J.; Studden, W. J., Tchebycheff Systems: With Applications in Analysis and Statistics (1966), Wiley Interscience: Wiley Interscience NY · Zbl 0153.38902
[31] Schumaker, L. L., Spline Functions (1981), Wiley Interscience: Wiley Interscience NY · Zbl 0165.38603
[32] Mazure, M.-L., Blossoming: a geometrical approach, Constr. Approx., 15, 33-68 (1999) · Zbl 0924.65010
[33] Mazure, M.-L., Finding all systems of weight functions associated with a given extended Chebyshev space, J. Approx. Theory, 163, 363-376 (2011) · Zbl 1217.41030
[34] Mazure, M.-L., On differentiation formulæ for Chebyshevian Bernstein and \(B\)-spline bases, Jaén J. Approx., 1, 111-143 (2009) · Zbl 1173.65016
[35] M.-L. Mazure, From Taylor interpolation to Hermite interpolation via duality, Jaén J. Approx. (in press).; M.-L. Mazure, From Taylor interpolation to Hermite interpolation via duality, Jaén J. Approx. (in press). · Zbl 1312.41008
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.