×

Neumann boundary-value problems for a time-fractional diffusion-wave equation in a half-plane. (English) Zbl 1268.35125

Summary: The time-fractional diffusion-wave equation with the Caputo derivative of the order \(0<\alpha<2\) is considered in a half-plane. Two types of Neumann boundary condition are examined: the mathematical condition with the prescribed boundary value of the normal derivative and the physical one with the prescribed boundary value of the matter flux.

MSC:

35R11 Fractional partial differential equations
Full Text: DOI

References:

[1] Gurtin, M. E.; Pipkin, A. C., A general theory of heat conduction with finite wave speeds, Arch. Ration. Mech. Anal., 31, 113-126 (1968) · Zbl 0164.12901
[2] Day, W., The Thermodynamics of Simple Materials with Fading Memory (1972), Springer: Springer Berlin · Zbl 0295.73007
[3] Nigmatullin, R. R., To the theoretical explanation of the “universal response”, Phys. Status Solidi (B), 123, 739-745 (1984)
[4] Nigmatullin, R. R., On the theory of relaxation with “remnant” temperature, Phys. Status Solidi (B), 124, 389-393 (1984)
[5] Povstenko, Y. Z., Fractional heat conduction equation and associated thermal stress, J. Thermal Stresses, 28, 83-102 (2005)
[6] Povstenko, Y. Z., Theory of thermoelasticity based on the space-time-fractional heat conduction equation, Phys. Scr. T, 136, 014017 (2009), (6 pp)
[7] Gorenflo, R.; Mainardi, F.; Moretti, D.; Paradisi, P., Time fractional diffusion: a discrete random walk approach, Nonlinear Dynam., 29, 129-143 (2002) · Zbl 1009.82016
[8] Samko, S. G.; Kilbas, A. A.; Marichev, O. I., Fractional Integrals and Derivatives, Theory and Applications (1993), Gordon and Breach: Gordon and Breach Amsterdam · Zbl 0818.26003
[9] Gorenflo, R.; Mainardi, F., Fractional calculus: integral and differential equations of fractional order, (Carpinteri, A.; Mainardi, F., Fractals and Fractional Calculus in Continuum Mechanics (1997), Springer: Springer New York), 223-276 · Zbl 1438.26010
[10] Kilbas, A. A.; Srivastava, H. M.; Trujillo, J. J., Theory and Applications of Fractional Differential Equations (2006), Elsevier: Elsevier Amsterdam · Zbl 1092.45003
[11] Podlubny, I., Fractional Differential Equations (1999), Academic Press: Academic Press San Diego · Zbl 0918.34010
[12] Magin, R. L., Fractional Calculus in Bioengineering (2006), Begell House Publishers, Inc.: Begell House Publishers, Inc. Connecticut
[13] Mainardi, F., Fractional calculus: some basic problems in continuum and statistical mechanics, (Carpinteri, A.; Mainardi, F., Fractals and Fractional Calculus in Continuum Mechanics (1997), Springer: Springer New York), 291-348 · Zbl 0917.73004
[14] (Hilfer, R., Applications of Fractional Calculus in Physics (2000), World Scientific: World Scientific Singapore) · Zbl 0998.26002
[15] Metzler, R.; Klafter, J., The random walk’s guide to anomalous diffusion: a fractional dynamics approach, Phys. Rep., 339, 1-77 (2000) · Zbl 0984.82032
[16] Metzler, R.; Klafter, J., The restaurant at the end of the random walk: recent developments in the description of anomalous transport by fractional dynamics, J. Phys. A: Math. Gen., 37, R161-R208 (2004) · Zbl 1075.82018
[17] Zaslavsky, G. M., Chaos, fractional kinetics, and anomalous transport, Phys. Rep., 371, 461-580 (2002) · Zbl 0999.82053
[18] West, B. J.; Bologna, M.; Grigolini, P., Physics of Fractal Operators (2003), Springer: Springer New York
[19] Uchaikin, V. V., Method of Fractional Derivatives (2008), Arteshock: Arteshock Ulyanovsk, (in Russian) · Zbl 1151.82430
[20] Gafiychuk, V. V.; Datsko, B. Yo., Mathematical modeling of different types of instabilities in time fractional reaction-diffusion systems, Comput. Math. Appl., 59, 1101-1107 (2010) · Zbl 1189.35151
[21] Wyss, W., The fractional diffusion equation, J. Math. Phys., 27, 2782-2785 (1986) · Zbl 0632.35031
[22] Schneider, W. R.; Wyss, W., Fractional diffusion and wave equations, J. Math. Phys., 30, 134-144 (1989) · Zbl 0692.45004
[23] Fujita, Y., Integrodifferential equation which interpolates the heat equation and the wave equation, Osaka J. Math., 27, 309-321 (1990) · Zbl 0790.45009
[24] Mainardi, F., The fundamental solutions for the fractional diffusion-wave equation, Appl. Math. Lett., 9, 23-28 (1996) · Zbl 0879.35036
[25] Mainardi, F., Fractional relaxation-oscillation and fractional diffusion-wave equation, Chaos Solitons Fractals, 7, 1461-1477 (1996) · Zbl 1080.26505
[26] Povstenko, Y. Z., Signaling problem for time-fractional diffusion-wave equation in a half-plane, Fract. Calc. Appl. Anal., 11, 329-352 (2008) · Zbl 1157.45004
[27] Povstenko, Y. Z., Time-fractional radial diffusion in a sphere, Nonlinear Dynam., 53, 55-65 (2008) · Zbl 1170.76357
[28] Prudnikov, A. P.; Brychkov, Yu. A.; Marichev, O. I., Integrals and Series, Elementary Functions (1981), Nauka: Nauka Moscow, (in Russian) · Zbl 0511.00044
[29] Kythe, P. K., Fundamental Solutions for Differential Operators and Applications (1996), Birkhäuser: Birkhäuser Boston · Zbl 0854.35118
[30] Povstenko, Y. Z., Analysis of fundamental solutions to fractional diffusion-wave equation in polar coordinates, Sci. Issues Jan Długosz Univ. Czȩst. Mat., XIV, 97-104 (2009)
[31] Schneider, W. R., Fractional diffusion, (Lima, R.; Streit, L.; Vilela Mendes, R., Dynamics and Stochastic Processes. Dynamics and Stochastic Processes, Lecture Notes in Physics, vol. 355 (1990), Springer: Springer Berlin), 276-286 · Zbl 0721.60086
[32] R. Gorenflo, F. Mainardi, Fractional oscillations and Mittag-Leffler functions, Preprint PR-A-96-14, Fachbereich Mathematik und Informatik, Freie Universität Berlin, 1996, pp. 1-22.; R. Gorenflo, F. Mainardi, Fractional oscillations and Mittag-Leffler functions, Preprint PR-A-96-14, Fachbereich Mathematik und Informatik, Freie Universität Berlin, 1996, pp. 1-22. · Zbl 0916.34011
[33] Gorenflo, R.; Loutchko, J.; Luchko, Yu., Computation of the Mittag-Leffler function and its derivatives, Fract. Calc. Appl. Anal., 5, 491-518 (2002) · Zbl 1027.33016
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.