×

Recognizing \(d\)-interval graphs and \(d\)-track interval graphs. (English) Zbl 1267.68121

Summary: A \(d\)-interval is the union of \(d\) disjoint intervals on the real line. A \(d\)-track interval is the union of \(d\) disjoint intervals on \(d\) disjoint parallel lines called tracks, one interval on each track. As generalizations of the ubiquitous interval graphs, \(d\)-interval graphs and \(d\)-track interval graphs have wide applications, traditionally to scheduling and resource allocation, and more recently to bioinformatics. In this paper, we prove that recognizing \(d\)-track interval graphs is NP-complete for any constant \(d\geq 2\). This confirms a conjecture of Gyárfás and West from 1995. Previously only the complexity of the case \(d=2\) was known. Our proof in fact implies that several restricted variants of this graph recognition problem, i.e., recognizing balanced \(d\)-track interval graphs, unit \(d\)-track interval graphs, and \((2,\dots ,2)\) \(d\)-track interval graphs, are all NP-complete. This partially answers another question recently raised by Gambette and Vialette. We also prove that recognizing depth-two 2-track interval graphs is NP-complete, even for the unit case. In sharp contrast, we present a simple linear-time algorithm for recognizing depth-two unit \(d\)-interval graphs. These and other results of ours give partial answers to a question of West and Shmoys from 1984 and a similar question of Gyárfás and West from 1995. Finally, we give the first bounds on the track number and the unit track number of a graph in terms of the number of vertices, the number of edges, and the maximum degree, and link the two numbers to the classical concepts of arboricity.

MSC:

68Q17 Computational difficulty of problems (lower bounds, completeness, difficulty of approximation, etc.)
68R10 Graph theory (including graph drawing) in computer science
Full Text: DOI

References:

[1] Akiyama, J., Exoo, G., Harary, F.: Covering and packing in graphs III: cyclic and acyclic invariants. Math. Slovaca 30, 405-417 (1980) · Zbl 0458.05050
[2] Alcón, L., Cerioli, M.R., de Figueiredo, C.M.H., Gutierrez, M., Meidanis, J.: Tree loop graphs. Discrete Appl. Math. 155, 686-694 (2007) · Zbl 1113.05024 · doi:10.1016/j.dam.2005.01.001
[3] Alon, N.: The linear arboricity of graphs. Isr. J. Math. 62, 311-325 (1988) · Zbl 0673.05019 · doi:10.1007/BF02783300
[4] Alon, N., Tarsi, M.: Coloring and orientation of graphs. Combinatorica 12, 125-134 (1992) · Zbl 0756.05049 · doi:10.1007/BF01204715
[5] Andreae, T.: On the unit interval number of a graph. Discrete Appl. Math. 22, 1-7 (1988) · Zbl 0673.05084 · doi:10.1016/0166-218X(88)90118-7
[6] Bafna, V., Narayanan, B., Ravi, R.: Nonoverlapping local alignments (weighted independent sets of axis-parallel rectangles). Discrete Appl. Math. 71, 41-53 (1996) · Zbl 0873.92011 · doi:10.1016/S0166-218X(96)00063-7
[7] Balogh, J., Pluhár, A.: A sharp edge bound on the interval number of a graph. J. Graph Theory 32, 153-159 (1999) · Zbl 0930.05067 · doi:10.1002/(SICI)1097-0118(199910)32:2<153::AID-JGT5>3.0.CO;2-P
[8] Bar-Yehuda, R., Halldórsson, M.M., Naor, J.S., Shachnai, H., Shapira, I.: Scheduling split intervals. SIAM J. Comput. 36, 1-15 (2006) · Zbl 1111.68046 · doi:10.1137/S0097539703437843
[9] Butman, A.; Hermelin, D.; Lewenstein, M.; Rawitz, D., Optimization problems in multiple-interval graphs, 268-277 (2007) · Zbl 1302.05179
[10] Chen, Z., Fu, B., Jiang, M., Zhu, B.: On recovering syntenic blocks from comparative maps. J. Comb. Optim. 18, 307-318 (2009) · Zbl 1180.90261 · doi:10.1007/s10878-009-9233-x
[11] Corneil, D.G., Kim, H., Natarajan, S., Olariu, S., Sprague, A.P.: Simple linear time recognition of unit interval graphs. Inf. Process. Lett. 55, 99-104 (1995) · Zbl 0875.68690 · doi:10.1016/0020-0190(95)00046-F
[12] Crochemore, M., Hermelin, D., Landau, G.M., Rawitz, D., Vialette, S.: Approximating the 2-interval pattern problem. Theor. Comput. Sci. 395, 283-297 (2008) · Zbl 1142.68070 · doi:10.1016/j.tcs.2008.01.007
[13] Gambette, P.; Vialette, S., On restrictions of balanced 2-interval graphs, No. 4769, 55-65 (2007) · Zbl 1141.68528 · doi:10.1007/978-3-540-74839-7_6
[14] Goldberg, A.V., Rao, S.: Beyond the flow decomposition barrier. J. ACM 45, 783-797 (1998) · Zbl 1064.90567 · doi:10.1145/290179.290181
[15] Griggs, J.R.: Extremal values of the interval number of a graph, II. Discrete Math. 28, 37-47 (1979) · Zbl 0454.05039 · doi:10.1016/0012-365X(79)90183-3
[16] Griggs, J.R., West, D.B.: Extremal values of the interval number of a graph. SIAM J. Algebr. Discrete Methods 1, 1-7 (1980) · Zbl 0499.05033 · doi:10.1137/0601001
[17] Gyárfás, A., West, D.B.: Multitrack interval graphs. Congr. Numer. 109, 109-116 (1995) · Zbl 0904.05050
[18] Halldórsson, M. M.; Karlsson, R. K., Strip graphs: recognition and scheduling, No. 4271, 137-146 (2007) · Zbl 1167.68409 · doi:10.1007/11917496_13
[19] Jiang, M.: Approximation algorithms for predicting RNA secondary structures with arbitrary pseudoknots. IEEE/ACM Trans. Comput. Biol. Bioinform. 7, 323-332 (2010) · doi:10.1109/TCBB.2008.109
[20] Jiang, M., Recognizing d-interval graphs and d-track interval graphs, No. 6213, 160-171 (2010) · Zbl 1288.05278 · doi:10.1007/978-3-642-14553-7_17
[21] Jiang, M.: On the parameterized complexity of some optimization problems related to multiple-interval graphs. Theor. Comput. Sci. 411, 4253-4262 (2010) · Zbl 1213.68461 · doi:10.1016/j.tcs.2010.09.001
[22] Jiang, M.: Inapproximability of maximal strip recovery. Theor. Comput. Sci. 412, 3759-3774 (2011) · Zbl 1217.92041 · doi:10.1016/j.tcs.2011.04.021
[23] Joseph, D.; Meidanis, J.; Tiwari, P., Determining DNA sequence similarity using maximum independent set algorithms for interval graphs, No. 621, 326-337 (1992) · Zbl 1502.92009
[24] Kumar, N., Deo, N.: Multidimensional interval graphs. Congr. Numer. 102, 45-56 (1994) · Zbl 0835.05077
[25] Maas, C.: Determining the interval number of a triangle-free graph. Computing 31, 347-354 (1983) · Zbl 0516.05058 · doi:10.1007/BF02251237
[26] Peroche, B.: Complexité de l’arboricité linéaire d’un graphe. RAIRO. Rech. Opér. 16, 125-129 (1982) · Zbl 0492.05025
[27] Roberts, F.S.: Graph Theory and Its Applications to Problems of Society. SIAM, Philadelphia (1987)
[28] Shermer, T. C., On rectangle visibility graphs III, external visibility and complexity, 234-239 (1996)
[29] Tarjan, R.E.: Data Structures and Network Algorithms. SIAM, Philadelphia (1983) · Zbl 0584.68077 · doi:10.1137/1.9781611970265
[30] Trotter, W.T. Jr., Harary, F.: On double and multiple interval graphs. J. Graph Theory 3, 205-211 (1979) · Zbl 0417.05050 · doi:10.1002/jgt.3190030302
[31] Vialette, S.: On the computational complexity of 2-interval pattern matching problems. Theor. Comput. Sci. 312, 223-249 (2004) · Zbl 1070.68052 · doi:10.1016/j.tcs.2003.08.010
[32] West, D.B.: A short proof of the degree bound for interval number. Discrete Math. 73, 309-310 (1989) · Zbl 0663.05040 · doi:10.1016/0012-365X(89)90276-8
[33] West, D.B., Shmoys, D.B.: Recognizing graphs with fixed interval number is NP-complete. Discrete Appl. Math. 8, 295-305 (1984) · Zbl 0554.68041 · doi:10.1016/0166-218X(84)90127-6
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.