×

The spectral length of a map between Riemannian manifolds. (English) Zbl 1267.58020

The authors define the spectral length of a differential mapping between Riemannian manifolds using families of spectral Dirichlet series. This length defines a distance between Riemannian manifolds up to isometries.

MSC:

58J50 Spectral problems; spectral geometry; scattering theory on manifolds
53C20 Global Riemannian geometry, including pinching
58J53 Isospectrality

References:

[1] N. Aronszajn, A. Krzywicki, and J. Szarski, A unique continuation theorem for exte- rior differential forms on Riemannian manifolds. Ark. Mat. 4 (1962), 417-453 (1962). · Zbl 0107.07803 · doi:10.1007/BF02591624
[2] P. H. Bérard, Spectral geometry: direct and inverse problems . Lecture Notes in Math. 1207, Springer-Verlag, Berlin 1986. · Zbl 0608.58001 · doi:10.1007/BFb0076330
[3] P. Bérard, G. Besson, and S. Gallot, Embedding Riemannian manifolds by their heat kernel. Geom. Funct. Anal. 4 (1994), 373-398. · Zbl 0806.53044 · doi:10.1007/BF01896401
[4] D. Burago, Y. Burago, and S. Ivanov, A course in metric geometry . Grad. Stud. Math. 33, Amer. Math. Soc., Providence, RI, 2001. · Zbl 0981.51016
[5] L. A. Caffarelli and A. Friedman, Partial regularity of the zero-set of solutions of lin- ear and superlinear elliptic equations. J. Differential Equations 60 (1985), 420-433. · Zbl 0593.35047 · doi:10.1016/0022-0396(85)90133-0
[6] A. Connes, Geometry from the spectral point of view. Lett. Math. Phys. 34 (1995), 203-238. · Zbl 1042.46515 · doi:10.1007/BF01872777
[7] A. Connes, A unitary invariant in Riemannian geometry. Int. J. Geom. Methods Mod. Phys. 5 (2008), 1215-1242. · Zbl 1197.46030 · doi:10.1142/S0219887808003284
[8] J. H. Conway and N. J. A. Sloane, Four-dimensional lattices with the same theta series. Internat. Math. Res. Notices 1992 (1992), no. 4, 93-96. · Zbl 0770.11022 · doi:10.1155/S1073792892000102
[9] G. Cornelissen and M. Marcolli, Zeta functions that hear the shape of a Riemann surface. J. Geom. Phys. 58 (2008), 619-632. · Zbl 1174.58004 · doi:10.1016/j.geomphys.2007.12.011
[10] G. Cornelissen and M. Marcolli, Quantum statistical mechanics, L-series and anabelian geometry. Preprint 2010. · Zbl 1329.82007
[11] J. W. de Jong, Graphs, spectral triples and Dirac zeta functions. p-Adic Numbers Ultra- metric Anal. Appl. 1 (2009), 286-296. · Zbl 1252.05084 · doi:10.1134/S2070046609040025
[12] H. Donnelly, Bounds for eigenfunctions of the Laplacian on compact Riemannian man- ifolds. J. Funct. Anal. 187 (2001), 247-261. · Zbl 0991.58006 · doi:10.1006/jfan.2001.3817
[13] M. R. Douglas, Spaces of quantum field theories. Preprint 2010.
[14] K. Fukaya, Collapsing of Riemannian manifolds and eigenvalues of Laplace operator. Invent. Math. 87 (1987), 517-547. · Zbl 0589.58034 · doi:10.1007/BF01389241
[15] P. B. Gilkey, Asymptotic formulae in spectral geometry . Studies in Advanced Mathemat- ics, Chapman & Hall/CRC, Boca Raton, FL, 2004. · Zbl 1080.58023
[16] M. Gromov, Metric structures for Riemannian and non-Riemannian spaces . English ed., Mod. Birkhäuser Class., Birkhäuser, Boston 2007. · Zbl 1113.53001
[17] B. Halpern, Periodic points on tori. Pacific J. Math. 83 (1979), 117-133. · Zbl 0438.58023 · doi:10.2140/pjm.1979.83.117
[18] Q. Han and F.-H. Lin, Nodal sets of solutions of elliptic differential equations . Monograph in preparation, available at
[19] Godfrey H. Hardy and Marcel Riesz, The general theory of Dirichlet’s series . Cam- bridge Tracts in Math and Math. Phys. 18, Cambridge University Press, London 1915.
[20] N. Higson, Meromorphic continuation of zeta functions associated to elliptic operators. In Operator algebras, quantization, and noncommutative geometry , Contemp. Math. 365, Amer. Math. Soc., Providence, RI, 2004, 129-142. · Zbl 1081.58017
[21] A. Ikeda, On lens spaces which are isospectral but not isometric. Ann. Sci. École Norm. Sup. (4) 13 (1980), 303-315. · Zbl 0451.58037
[22] A. Kasue and H. Kumura, Spectral convergence of Riemannian manifolds. Tohoku Math. J. (2) 46 (1994), 147-179. · Zbl 0814.53035 · doi:10.2748/tmj/1178225756
[23] S. Kobayashi and K. Nomizu, Foundations of differential geometry . Vol. I, Wiley Classics Library, John Wiley & Sons, New York 1996. · Zbl 0119.37502
[24] G. Landi and C. Rovelli, General relativity in terms of Dirac eigenvalues. Phys. Rev. Lett. 78 (1997), 3051-3054. · Zbl 1042.83509 · doi:10.1103/PhysRevLett.78.3051
[25] G. Landi and C. Rovelli, Gravity from Dirac eigenvalues. Modern Phys. Lett. A 13 (1998), 479-494.
[26] J. Milnor, Eigenvalues of the Laplace operator on certain manifolds. Proc. Nat. Acad. Sci. U.S.A. 51 (1964), 542. · Zbl 0124.31202 · doi:10.1073/pnas.51.4.542
[27] A. Schiemann, Ternary positive definite quadratic forms are determined by their theta series. Math. Ann. 308 (1997), 507-517. · Zbl 0876.11029 · doi:10.1007/s002080050086
[28] M. Seriu, Spectral representation of the spacetime structure: the “distance” between universes with different topologies. Phys. Rev. D (3) 53 (1996), 6902-6920.
[29] J.-P. Serre, Cours d’arithmétique . 4ième ed., Presses Universitaires de France, Paris 1995.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.