×

Pairs of dual periodic frames. (English) Zbl 1266.42073

The authors consider constructions of dual pairs of frames in the setting of the Hilbert space of periodic functions \(L^2(0,2\pi)\). The frames constructed are generalized shift-invariant systems, whose generators are given explicitly as trigonometric polynomials which provides an efficient computation procedure of the coefficients in the series expansions.
The main result (Theorem 3.1) is the following general setup for constructions of dual pairs of frames for \(L^2(0,2\pi)\): Let \(\{\psi_k\}_{k \in I}\) be a collection of trigonometric polynomials with real-valued Fourier coefficients, and consider any sequence \(\{L_k\}_{k\in I}\) of positive integers. Assume that \(\{T_{2\pi/L_k}^\ell \psi_k\}_{k \in I,\ell=1,\dotsc,L_k}\) forms a Bessel sequence. Under a partition of unity condition \(\sum_k \sqrt{L_k}\hat{\psi_k}(n)=1\), \(n \in \mathbb{Z}\), and two assumptions on the support sets \(S_k:=\operatorname{supp}\,\hat{\psi_k} \subset \mathbb{Z}\) (bounding the number of overlapping \(S_k\)’s and bounding a growth rate of certain unions of the \(S_k\)’s), the systems \(\{T_{2\pi/L_k}^\ell \psi_k\}_{k \in I,\ell=1,\dotsc,L_k}\) and \(\{T_{2\pi/L_k}^\ell \widetilde{\psi}_k\}_{k \in I,\ell=1,\dotsc,L_k}\) form a pair of dual frames, whenever \(\{T_{2\pi/L_k}^\ell \widetilde{\psi}_k\}_{k \in I,\ell=1,\dotsc,L_k}\) is a Bessel sequence. Here, \(\widetilde{\psi}_k\) is defined as a finite linear combination of the \(\psi_k\); in particular, \(\widetilde{\psi}_k\) is also a trigonometric polynomial for each \(k \in I\). The result is similar in spirit of those in [O. Christensen, Appl. Comput. Harmon. Anal. 20, No. 3, 403–410 (2006; Zbl 1106.42030)], where dual pairs of Gabor frames are constructed for \(L^2(\mathbb{R})\). Note, however, that the technical Bessel condition on the dual frame in the above general setup is not necessary in the setting of, e.g., Gabor and wavelet systems (cf. Corollary 3.1 and 3.2).
Finally, the construction procedure is applied to constructions of periodic frames of various types, including nonstationary wavelet systems, Gabor systems and hybrids of them.

MSC:

42C15 General harmonic expansions, frames

Citations:

Zbl 1106.42030
Full Text: DOI

References:

[1] Breitenberger, E., Uncertainty measures and uncertainty relations for angle observables, Found. Phys., 15, 353-364 (1983)
[2] Casazza, P. G.; Christensen, O., Weyl-Heisenberg frames for subspaces of \(L^2(R)\), Proc. Amer. Math. Soc., 129, 145-154 (2001) · Zbl 0987.42023
[3] Christensen, O., An Introduction to Frames and Riesz Bases (2003), Birkhäuser: Birkhäuser Boston · Zbl 1017.42022
[4] Christensen, O., Pairs of dual Gabor frames with compact support and desired frequency localization, Appl. Comput. Harmon. Anal., 20, 403-410 (2006) · Zbl 1106.42030
[5] Christensen, O.; Goh, S. S., Pairs of oblique duals in spaces of periodic functions, Adv. Comput. Math., 32, 353-379 (2010) · Zbl 1190.41015
[6] Christensen, O.; Kim, R. Y., On dual Gabor frame pairs generated by polynomials, J. Fourier Anal. Appl., 16, 1-16 (2010) · Zbl 1210.42048
[7] Daubechies, I., Ten Lectures on Wavelets (1992), SIAM: SIAM Philadelphia · Zbl 0776.42018
[8] (Feichtinger, H. G.; Strohmer, T., Gabor Analysis and Algorithms: Theory and Applications (1998), Birkhäuser: Birkhäuser Boston) · Zbl 0890.42004
[9] (Feichtinger, H. G.; Strohmer, T., Advances in Gabor Analysis (2002), Birkhäuser: Birkhäuser Boston) · Zbl 1005.00015
[10] Goh, S. S.; Goodman, T. N.T., Inequalities on time-concentrated or frequency-concentrated functions, Adv. Comput. Math., 24, 333-351 (2006) · Zbl 1099.42002
[11] Goh, S. S.; Micchelli, C. A., Uncertainty principles in Hilbert spaces, J. Fourier Anal. Appl., 8, 335-373 (2002) · Zbl 1027.47028
[12] Goh, S. S.; Teo, K. M., An algorithm for constructing multidimensional biorthogonal periodic multiwavelets, Proc. Edinb. Math. Soc., 43, 633-649 (2000) · Zbl 0968.42022
[13] Goh, S. S.; Teo, K. M., Wavelet frames and shift-invariant subspaces of periodic functions, Appl. Comput. Harmon. Anal., 20, 326-344 (2006) · Zbl 1088.42021
[14] Goh, S. S.; Teo, K. M., Extension principles for tight wavelet frames of periodic functions, Appl. Comput. Harmon. Anal., 25, 168-186 (2008) · Zbl 1258.42031
[15] Gröchenig, K., Foundations of Time-Frequency Analysis (2001), Birkhäuser: Birkhäuser Boston · Zbl 0966.42020
[16] I. Kim, Gabor frames with trigonometric spline windows, PhD thesis, University of Illinois at Urbana-Champaign, 2011.; I. Kim, Gabor frames with trigonometric spline windows, PhD thesis, University of Illinois at Urbana-Champaign, 2011. · Zbl 1401.42034
[17] Laugesen, R. S., Gabor dual spline windows, Appl. Comput. Harmon. Anal., 27, 180-194 (2009) · Zbl 1174.42038
[18] Lee, E. A.; Varaiya, P., Structure and Interpretation of Signals and Systems (2003), Addison-Wesley: Addison-Wesley Boston
[19] Lemvig, J., Constructing pairs of dual bandlimited framelets with desired time localization, Adv. Comput. Math., 30, 231-247 (2009) · Zbl 1166.42020
[20] Mallat, S., A Wavelet Tour of Signal Processing (1999), Academic Press: Academic Press San Diego · Zbl 0998.94510
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.