×

Ionads. (English) Zbl 1266.18006

An ionad is yet another variant of the notion of topological space. The poset of open subsets and the category of sheaves on a topological space \(X\) only allow us to recapture the space’s sober reflection, not the actual points of \(X\). To remedy this the author defines an ionad to be a set \(X\) equipped with a finite limit preserving comonad \(I_X\) on the category \(\mathcal Set^X\) of \(X\)-indexed families of sets. We think of elements of \(X\) as the points of the ionad and the \(I_X\)-coalgebras as the sheaves. Many examples of ionads, including the ionad associated with a space, are provided by giving a basis; that is, a small category \(\mathcal B\) and a flat functor \(M:\mathcal B \rightarrow \mathcal Set^X\). If you are going to learn topology this way, with ionads, a little course on basic category theory might serve well. However, it will be worth it for the beauty of the subject’s development.

MSC:

18B25 Topoi
54A05 Topological spaces and generalizations (closure spaces, etc.)

References:

[1] Awodey, S.; Kishida, K., Topology and modality: the topological interpretation of first-order modal logic, The Review of Symbolic Logic, 1, 146-166 (2008) · Zbl 1204.03023
[2] Blass, A., Exact functors and measurable cardinals, Pacific Journal of Mathematics, 63, 2, 335-346 (1976) · Zbl 0348.18007
[3] Ehresmann, C., Gattungen von lokalen Strukturen, Jahresbericht der Deutschen Mathematiker-Vereinigung, 60, 49-77 (1957) · Zbl 0097.37803
[4] Eilenberg, S.; Moore, J. C., Adjoint functors and triples, Illinois Journal of Mathematics, 9, 381-398 (1965) · Zbl 0135.02103
[5] H. Forssell, First-order logical duality, Ph.D. Thesis, Carnegie-Mellon University, 2008.; H. Forssell, First-order logical duality, Ph.D. Thesis, Carnegie-Mellon University, 2008.
[6] Grothendieck, A.; Verdier, J.-L., Théorie des topos et cohomologie étale des schémas. Tome 1: Théorie des topos, (Lecture Notes in Mathematics, vol. 269 (1972), Springer-Verlag), Séminaire de Géométrie Algébrique du Bois-Marie 1963-1964 (SGA 4)
[7] Johnstone, P. T., Adjoint lifting theorems for categories of algebras, Bulletin of the London Mathematical Society, 7, 3, 294-297 (1975) · Zbl 0315.18004
[8] Johnstone, P. T., (Topos Theory. Topos Theory, London Mathematical Society Monographs, vol. 10 (1977), Academic Press: Academic Press London) · Zbl 0368.18001
[9] Johnstone, P. T., Stone spaces, (Cambridge Studies in Advanced Mathematics, vol. 3 (1982), Cambridge University Press) · Zbl 0586.54001
[10] Johnstone, P. T., (Sketches of an elephant: a topos theory compendium, Vol. 1. Sketches of an elephant: a topos theory compendium, Vol. 1, Oxford Logic Guides, vol. 43 (2002), The Clarendon Press Oxford University Press) · Zbl 1071.18001
[11] Johnstone, P. T., (Sketches of an elephant: a topos theory compendium, Vol. 2. Sketches of an elephant: a topos theory compendium, Vol. 2, Oxford Logic Guides, vol. 44 (2002), The Clarendon Press Oxford University Press) · Zbl 1071.18001
[12] Lack, S.; Street, R., The formal theory of monads II, Journal of Pure and Applied Algebra, 175, 243-265 (2002) · Zbl 1019.18002
[13] Makkai, M.; Paré, R., Accessible categories: the foundations of categorical model theory, (Contemporary Mathematics, vol. 104 (1989), American Mathematical Society) · Zbl 0703.03042
[14] Street, R., The formal theory of monads, Journal of Pure and Applied Algebra, 2, 2, 149-168 (1972) · Zbl 0241.18003
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.