×

On the Diophantine equation \(x^2+d^{2l+1}=y^n\). (English) Zbl 1266.11059

For a squarefree integer \(d > 0\), let \(h(-d)\) denote the class number of the field \({\mathbb Q}(\sqrt{-d})\). The authors find that the equation in the title has precisely 12 solutions \((x,y,n,d,l)\) with \(x\), \(y\) positive and coprime integers, \(l\) non-negative, \(n\geq 3\), and \(2 \leq h(-d) \leq 3\). In case \(d\equiv 7 \pmod 8\), the additional requirement \(y\) odd is made.
An extended version of a lemma of J. H. E. Cohn [Acta Arith. 109, 205–206 (2003; Zbl 1058.11024)] providing a parameterisation for the solutions of the generalized Ramanujan-Nagell equation \(x^2+D=y^n\) is first proved. In case \(n\geq 5\) is prime, an application of the primitive prime divisors theorem of Yu. Bilu, G. Hanrot and P. M. Voutier [J. Reine Angew. Math. 539, 75–122 (2001; Zbl 0995.11010)] suffices to conclude that there is no solution under the indicated conditions. For the case \(n=4\), the problem is reduced to solving several ternary equations of signature \((m,m,2)\) for which the modular method works. The complete list of solutions to the equation of interest is derived in this case by invoking some results of M. A. Bennett and C. M. Skinner [Can. J. Math. 56, 23–54 (2004; Zbl 1053.11025)]. Finally, if \(n=3\), the successful approach depends on the value of \(h(-d)\). In case \(h(-d)=2\), a specific ingredient is Chabauty’s method for finding all rational points on several hyperelliptic curves of genus 2. To settle the remaining case, the authors borrow from M. Mignotte and B. M. M. de Weger [Glasg. Math. J. 38, 77–85 (1996; Zbl 0847.11011)] the idea to reduce the problem to the resolution of several Thue-Mahler equations of degree 3. Local considerations suffice to exclude all but three values for \(d\). The proof is completed by using MAGMA to find all the \(S\)-integral points on some elliptic curves.

MSC:

11D41 Higher degree equations; Fermat’s equation
11D61 Exponential Diophantine equations
Full Text: DOI

References:

[1] Muriefah, Glasgow Math. J. 50 pp 175– (2008)
[2] Nagell, Norsk. Mat. Forensings Skifter 13 pp 65– (1923)
[3] Bérczes, Publ. Math. Debrecen 53 pp 375– (1998)
[4] DOI: 10.1017/S0017089500031293 · Zbl 0847.11011 · doi:10.1017/S0017089500031293
[5] DOI: 10.4153/CJM-2004-002-2 · Zbl 1053.11025 · doi:10.4153/CJM-2004-002-2
[6] Luca, Ann. Sci. Math. Qübec 33 pp 171– (2009)
[7] Arno, Acta. Arith. 83 pp 295– (1998)
[8] DOI: 10.1142/S1793042108001791 · Zbl 1231.11041 · doi:10.1142/S1793042108001791
[9] DOI: 10.1006/jnth.2001.2750 · Zbl 1037.11021 · doi:10.1006/jnth.2001.2750
[10] Luca, Fibonacci Quart. 54 pp 322– (2007)
[11] Arif, Arab J. Math. Sci. 7 pp 67– (2001)
[12] DOI: 10.1155/S0161171202004696 · Zbl 1085.11021 · doi:10.1155/S0161171202004696
[13] Arif, Arab. J. Sci. Eng. Sect. A Sci. 26 pp 53– (2001)
[14] DOI: 10.1017/S0004972700022231 · Zbl 0997.11027 · doi:10.1017/S0004972700022231
[15] Ljunggren, Ark. Mat. Astr. Fys. 29A (1943)
[16] Lebesque, Nouvelle Annales des Mathématiques 9 pp 178– (1850)
[17] DOI: 10.1016/j.jnt.2010.09.009 · Zbl 1219.11059 · doi:10.1016/j.jnt.2010.09.009
[18] Le, Publ. Math. Debrecen 63 pp 27– (2003)
[19] DOI: 10.1007/s00013-002-8213-5 · Zbl 1006.11013 · doi:10.1007/s00013-002-8213-5
[20] DOI: 10.1093/qmath/os-5.1.150 · doi:10.1093/qmath/os-5.1.150
[21] Gyory, Publ. Math. Debrecen 65 pp 341– (2004)
[22] DOI: 10.1007/978-3-540-79456-1_29 · Zbl 1232.11130 · doi:10.1007/978-3-540-79456-1_29
[23] DOI: 10.4064/aa146-2-6 · Zbl 1219.11058 · doi:10.4064/aa146-2-6
[24] DOI: 10.1353/ajm.2004.0027 · Zbl 1059.11041 · doi:10.1353/ajm.2004.0027
[25] DOI: 10.1090/S0025-5718-1995-1284673-6 · doi:10.1090/S0025-5718-1995-1284673-6
[26] DOI: 10.1155/S0161171298000866 · Zbl 0905.11017 · doi:10.1155/S0161171298000866
[27] Ljunggren, Pacific J. Math. 14 pp 585– (1964) · Zbl 0131.28401 · doi:10.2140/pjm.1964.14.585
[28] DOI: 10.1155/S0161171297000409 · Zbl 0881.11038 · doi:10.1155/S0161171297000409
[29] DOI: 10.4064/aa109-2-8 · Zbl 1058.11024 · doi:10.4064/aa109-2-8
[30] DOI: 10.1142/S1793042109002572 · Zbl 1233.11037 · doi:10.1142/S1793042109002572
[31] Cohn, Acta. Arith. 65 pp 367– (1993)
[32] DOI: 10.4064/aa127-1-6 · Zbl 1117.11022 · doi:10.4064/aa127-1-6
[33] DOI: 10.1016/S0019-3577(04)90021-3 · Zbl 1088.11021 · doi:10.1016/S0019-3577(04)90021-3
[34] DOI: 10.1007/BF01197049 · Zbl 0770.11019 · doi:10.1007/BF01197049
[35] DOI: 10.1155/S0161171299224593 · Zbl 0960.11025 · doi:10.1155/S0161171299224593
[36] DOI: 10.1017/CBO9780511566042 · doi:10.1017/CBO9780511566042
[37] Cangül, Fibonacci Quart. 48 pp 39– (2010)
[38] Shorey, Transcendence Theory: Advances and Applications pp 59– (1977)
[39] Schinzel, Acta. Arith. 31 pp 199– (1976)
[40] Bugeaud, Rev. Colombiana Mat. 40 pp 31– (2006)
[41] Saradha, Publ. Math. Debrecen 71 pp 349– (2007)
[42] DOI: 10.1112/S0010437X05001739 · Zbl 1128.11013 · doi:10.1112/S0010437X05001739
[43] DOI: 10.1016/S0019-3577(06)80009-1 · Zbl 1110.11012 · doi:10.1016/S0019-3577(06)80009-1
[44] Bugeaud, Acta. Arith. 80 pp 213– (1997)
[45] Ribenboim, Classical Theory of Algebraic Numbers pp 636– (2001) · doi:10.1007/978-0-387-21690-4
[46] DOI: 10.1006/jsco.1996.0125 · Zbl 0898.68039 · doi:10.1006/jsco.1996.0125
[47] Pink, Commun. Math 19 pp 1– (2011)
[48] Bilu, J. Reine Angew. Math. 539 pp 75– (2001)
[49] Pink, Publ. Math. Debrecen 70 pp 149– (2007)
[50] DOI: 10.1007/s00013-008-2847-x · Zbl 1175.11018 · doi:10.1007/s00013-008-2847-x
[51] Nagell, Nova Acta Reg. Soc. Upsal. 16 pp 1– (1955)
[52] Muriefah, Demonstratio Math. 319 pp 285– (2006)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.